• Title/Summary/Keyword: Pulse Mode

Search Result 753, Processing Time 0.022 seconds

A 16-channel CMOS Inverter Transimpedance Amplifier Array for 3-D Image Processing of Unmanned Vehicles (무인차량용 3차원 영상처리를 위한 16-채널 CMOS 인버터 트랜스임피던스 증폭기 어레이)

  • Park, Sung Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1730-1736
    • /
    • 2015
  • This paper presents a 16-channel transimpedance amplifier (TIA) array implemented in a standard $0.18-{\mu}m$ CMOS technology for the applications of panoramic scan LADAR (PSL) systems. Since this array is the front-end circuits of the PSL systems to recover three dimensional image for unmanned vehicles, low-noise and high-gain characteristics are necessary. Thus, we propose a voltage-mode inverter TIA (I-TIA) array in this paper, of which measured results demonstrate that each channel of the array achieves $82-dB{\Omega}$ transimpedance gain, 565-MHz bandwidth for 0.5-pF photodiode capacitance, 6.7-pA/sqrt(Hz) noise current spectral density, and 33.8-mW power dissipation from a single 1.8-V supply. The measured eye-diagrams of the array confirm wide and clear eye-openings up to 1.3-Gb/s operations. Also, the optical pulse measurements estimate that the proposed 16-channel TIA array chip can detect signals within 20 meters away from the laser source. The whole chip occupies the area of $5.0{\times}1.1mm^2$ including I/O pads. For comparison, a current-mode 16-channel TIA array is also realized in the same $0.18-{\mu}m$ CMOS technology, which exploits regulated-cascode (RGC) input configuration. Measurements reveal that the I-TIA array achieves superior performance in optical pulse measurements.

Theory of optimal second-order PMD compensation (최적의 2차 편광모드분산 보상에 관한 이론적 고찰)

  • 김상인
    • Korean Journal of Optics and Photonics
    • /
    • v.14 no.6
    • /
    • pp.583-587
    • /
    • 2003
  • In this paper, the optimal performance of optical second-order polarization mode dispersion (PMD) compensation has been investigated theoretically in terms of minimization of the root-mean-square (RMS) pulse broadening. The optimal compensation vector in feedforward-type second-order PMD compensation has been derived, and the RMS pulse broadening factor after the optimal second-order PMD compensation has been analytically calculated. The calculated result has been compared with the previously reported simulation result where numerically optimized feedback scheme was adopted. They are in good agreement, which verifies the validity of the derivation. The investigation in this work will form the basis for the implementation of the feed-forward-type second-order PMD compensation.

Shielding Effect of Radiation Protector for Interventional Procedure (중재적 방사선 분야 방호용구 차폐효과)

  • Ko, Shin-Kwan;Kang, Byung-Sam;Lim, Chung-Hwang
    • Journal of radiological science and technology
    • /
    • v.30 no.3
    • /
    • pp.213-219
    • /
    • 2007
  • The purpose of this study is to evaluate shielding effect of radiation protector for interventional radiologists in procedures by measuring inside and outside of radiation protector. In this study, we measured the radiation dose of 4 interventional radiologists during TACE and PTBD procedure for 4 month(2005.05-2005.09). Absorbed dose were measured by TLD placed underneath and over radiation protector such as Goggle, Thyroid protector, Apron and placed on the 4th finger of Hand. In addition, we measured background radiation dose in the control room using TLD. During TACE procedure, using 0.07 mmPb Goggle decreased average 53.8% of radiation dose rate in continuous fluoroscopic mode and decreased average 77.6% of radiation dose rate in pulse fluoroscopic mode. Using 0.5 mmPb Thyroid protector decreased average 88.9% of radiation dose rate in continuous fluoroscopic mode and decreased average 92.8% in pulse fluoroscopic mode. During PTBD procedure, using 0.07 mmPb Goggle decreased radiation dose rate average 62.7%, 87.9% by 0.5 mmPb Thyroid protector, 90.5% by 0.5 mmPb Apron. The average fluoroscopic time of PTBD was 6.14 min. shorter than TACE procedure, but radiation exposure dose rate of PTBD was 3 times higher in total body dose, and 40 times higher in hand dose rate than TACE. Interventional radiologists must wear thicker protector recommended over 0.5 mmPb. Also, they must use lead Goggle during interventional procedure. Abdomen dose decreased average 38.4% by drawing a lead curtain under the patient's table, therefore, they must draw a lead curtain to shield scattering ray. Radiation exposure dose decreased average 59.0% by using pulse fluoroscopic mode. So radiologists would better use pulse fluoroscopic mode than continuous fluoroscopic mode to decrease exposure dose.

  • PDF

Q-Switched Nd YAG's SHG conversion techniques for a skin diseased treatment (피부질환 치료를 위한 Q-Switched Nd:YAG의 SHG 변환기술)

  • Kim, Whi-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.6
    • /
    • pp.1141-1149
    • /
    • 2009
  • Pulse style Nd: YAG Laser is suitable in skin remaking treatment, in compliance with the ramp continuous oscillation until of course normal takeoff, the Q-switch and mode motive takeoff the takeoff form which is various is possible and it is coming to be widely used in microsurgery and skin remaking promotion. According to therapeutic objective very it is important to control a energy density. Control of energy density the method which controls the pulse repetition rate of Laser output is mainly used. From the research which it sees pulse style Nd: It will be able to control the pulse repetition rate of YAG, the 2nd harmonic occurrence Laser (second harmonic generation: SHG) with the energy part of the light-wave which is a footnote wave number will hold and nonlinear decision it propagates and is converted by energy of the light-wave which is a footnote wave number the actual condition which and it applies the second harmonic occurrence in compliance with a secondary nonlinearity it leads and until skin deep part therapeutic possibility is the thing it will be able to observe simply.

Design of Low-complexity FFT Processor for Multi-mode Radar Signal Processing (멀티모드 레이다 신호처리를 위한 저복잡도 FFT 프로세서 설계)

  • Park, Yerim;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2020
  • Recently, a multi-mode radar system was designed for efficient operation of unmanned aerial vehicles (UAVs) in various environments, which has the advantage of being able to integrate and utilize methods of the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar. For the range detection part of the multi-mode radar signal processor (RSP), the hardware structure using the FFT processor and the IFFT processor is required to be designed in a way that improves efficiency on the area side. In addition, given the radar application environment that requires a variety of distance resolutions, FFT processors need to support variable-length operations. In this paper, the FFT processor and IFFT processor in multi-mode RSP range estimation are designed and proposed as hardware for a single FFT processor that supports variable length operation of 16-1024 points. The proposed FFT processor designed in hardware description language (HDL) and can be implemented with 7,452 logic elements and 5,116 registers.

Test & Evaluation for the Configuration Optimization of Thrust Chamber in 70 N-class N2H4 Thruster (Part II: Pulse-mode Performance According to the Chamber Length Variation) (70 N급 하이드라진 추력기의 추력실 최적설계와 시험평가 (Part II: 추력실 길이변화에 따른 펄스모드 성능특성))

  • Jung, Hun;Kim, Jong Hyun;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.18 no.1
    • /
    • pp.50-57
    • /
    • 2014
  • A ground hot-firing test (HFT) was conducted to take out the optimal design configurations for the thrust chamber of 70 N-class liquid rocket engine under development. Monopropellant grade (purity: ${\geq}98.5%$) hydrazine was adopted as a propellant for the HFT, and three kinds of thrust chambers having characteristic lengths ($L^*$) of 2.79, 2.95, and 3.13 m were selected for their performance evaluation. It is revealed through the test and evaluation that the increase of the $L^*$ leads to a performance degradation in the test condition specified, and pulse response performance of the development model shows superior characteristics to commercialized hydrazine thrusters.

A Design of PFM/PWM Dual Mode Feedback Based LLC Resonant Converter Controller IC for LED BLU (PFM/PWM 듀얼 모드 피드백 기반 LED BLU 구동용 LLC 공진 변환 제어 IC 설계)

  • Yoo, Chang-Jae;Kim, Hong-Jin;Park, Young-Jun;Lee, Kang-Yoon
    • Journal of IKEEE
    • /
    • v.17 no.3
    • /
    • pp.267-274
    • /
    • 2013
  • This paper presents a design of LLC resonant converter IC for LED backlight unit based on PFM/PWM dual-mode feedback. Dual output LLC resonant architecture with a single inductor is proposed, where the master output is controlled by the PFM and slave output is controlled by the PWM. To regulate the master output PFM is used as feedback to control the frequency of the power switch. On the other hand, PWM feedback is used to control the pulse width of the power switch and to regulate the slave output. This chip is fabricated in 0.35um 2P3M BC(Bipolar-CMOS-DMOS) Process and the die area is $2.3mm{\times}2.2mm$. Current consumptions is 26mA from 5V supply.

Solitin Pulse Generation with Mode-Locked Erbium-Doped Fiber Laser Using Nonlinear Amplifying Loop Mirror (Nonlinear Amplifying Loop Mirror를 사용하여 모우드 록킹된 Erbium 첨가 광섬유 레이저에서 발생하는 솔리톤 펄스)

  • 박희갑;임경아
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.2
    • /
    • pp.142-147
    • /
    • 1995
  • Soliton pulse outputs are generated with figure '8' type erbium-doped fiber laser mode-locked by using a fiber loop mirror. The fiber loop mirror consists of an erbium-doped fiber amplifier at the one end of the loop, and 504 m-long dispersion-shifted fiber as a nonlinear medium. By pumping with a $1.48{\mu}m$ wavelength laser diode and adjusting the polarization controllers inside the loop, soliton pulses are generated with 1574 nm center wavelength and 1.2 nm linewidth. The soliton pulses are found randomly spaced within the fundamental period corresponding to cavity round trip time. The autocorrelation trace shows that the pulse width is 2.4 ps, which is in good agreement with the theoretical prediction. The pulsewidth- bandwidth product is found to be 0.348 which means that the pulses are nearly transform-limited.imited.

  • PDF

An Estimate of Image Quality and Radiation Doses of Coronary Artery in MDCT Using Prospective and Retrospective ECG Gating Scan Mode (MDCT 관상동맥 조영 검사에서 전향적 동조화 및 후향적 동조화 기법의 화질과 선량 관계)

  • Oh, Jong-Kap
    • Journal of radiological science and technology
    • /
    • v.34 no.4
    • /
    • pp.315-321
    • /
    • 2011
  • The goal of this study is to reduce patient exposure dose by providing image quality and radiation dose according to inspection methods. Volume Computed Tomography Dose Index(CTDIvol) and Dose Length Product(DLP) of prospective and retrospective ECG gating snapshot segment of Coronary CT angiography(CTA) were measured each snapshot segment methods. CT number, noise, uniformity, and resolution were also measured using phantom under the same condition of coronary CTA. The results showed that CT number, noise, uniformity and resolution are similar to each other. In terms of CTDIvol and DLP, however, measurement dose of prospective ECG gating snapshot segment was lower than the retrospective case by 37.5% and 40.3%. Therefore, it is highly recommended that in the coronary CTA, prospective ECG gating scan mode should be chosen to reduce patient dose.

Design of Multi-Mode Radar Signal Processor for UAV Detection (무인기 탐지를 위한 멀티모드 레이다 신호처리 프로세서 설계)

  • Lee, Seunghyeok;Jung, Yongchul;Jung, Yunho
    • Journal of Advanced Navigation Technology
    • /
    • v.23 no.2
    • /
    • pp.134-141
    • /
    • 2019
  • Radar systems are divided into the pulse Doppler (PD) radar and the frequency modulated continuous wave (FMCW) radar depending on the transmission waveform. In particular, the PD radar is advantageous for long-range target detection, and the FMCW radar is suitable for short-range target detection. In this paper, we present design and implementation results for a multi-mode radar signal processor (RSP) that can support both PD and FMCW radar systems to detect unmanned aerial vehicles (UAVs) at short distances as well as long distances. The proposed radar signal processor can be implemented based on Altera Cyclone-IV FPGA with 19,623 logic elements, 9,759 registers, and 25,190,400 memory bits. The logic elements and registers of the proposed radar signal processor are reduced by approximately 43% and 30%, respectively, compared to the sum of logic elements and registers of the conventional PD radar and FMCW radar signal processor.