• Title/Summary/Keyword: Public key cryptography

Search Result 238, Processing Time 0.029 seconds

New Construction of Short Certificate-Based Signature against Existential Forgery Attacks

  • Lu, Yang;Wang, Gang;Li, Jiguo;Shen, Jian
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.7
    • /
    • pp.3629-3647
    • /
    • 2017
  • Certificate-based cryptography is a useful public key cryptographic primitive that combines the merits of traditional public key cryptography and identity-based cryptography. It not only solves the key escrow problem inherent in identity-based cryptography, but also simplifies the cumbersome certificate management problem in traditional public key cryptography. So far, four short certificate-based signature schemes have been proposed. However, three of them fail in achieving the existential unforgeability under adaptive chosen-message attacks and the remaining one was not constructed in the normal framework of certificate-based signature. In this paper, we put forward a new short certificate-based signature scheme. The proposed scheme is devised in the normal framework of certificate-based signature and overcomes the security weaknesses in the previous short certificate-based signature schemes. In the random oracle model, we formally prove that it achieves the existential unforgeability against adaptive chosen-message attacks. Performance comparison shows that it is efficient and practical.

MoTE-ECC Based Encryption on MSP430

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.15 no.3
    • /
    • pp.160-164
    • /
    • 2017
  • Public key cryptography (PKC) is the basic building block for the cryptography applications such as encryption, key distribution, and digital signature scheme. Among many PKC, elliptic curve cryptography (ECC) is the most widely used in IT systems. Recently, very efficient Montgomery-Twisted-Edward (MoTE)-ECC was suggested, which supports low complexity for the finite field arithmetic, group operation, and scalar multiplication. However, we cannot directly adopt the MoTE-ECC to new PKC systems since the cryptography is not fully evaluated in terms of performance on the Internet of Things (IoT) platforms, which only supports very limited computation power, energy, and storage. In this paper, we fully evaluate the MoTE-ECC implementations on the representative IoT devices (16-bit MSP processors). The implementation is highly optimized for the target platform and compared in three different factors (ROM, RAM, and execution time). The work provides good reference results for a gradual transition from legacy ECC to MoTE-ECC on emerging IoT platforms.

A Provable Authenticated Certificateless Group Key Agreement with Constant Rounds

  • Teng, Jikai;Wu, Chuankun
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.104-110
    • /
    • 2012
  • Group key agreement protocols allow a group of users, communicating over a public network, to establish a shared secret key to achieve a cryptographic goal. Protocols based on certificateless public key cryptography (CL-PKC) are preferred since CL-PKC does not need certificates to guarantee the authenticity of public keys and does not suffer from key escrow of identity-based cryptography. Most previous certificateless group key agreement protocols deploy signature schemes to achieve authentication and do not have constant rounds. No security model has been presented for group key agreement protocols based on CL-PKC. This paper presents a security model for a certificateless group key agreement protocol and proposes a constant-round group key agreement protocol based on CL-PKC. The proposed protocol does not involve any signature scheme, which increases the efficiency of the protocol. It is formally proven that the proposed protocol provides strong AKE-security and tolerates up to $n$-2 malicious insiders for weak MA-security. The protocol also resists key control attack under a weak corruption model.

Study of Modular Multiplication Methods for Embedded Processors

  • Seo, Hwajeong;Kim, Howon
    • Journal of information and communication convergence engineering
    • /
    • v.12 no.3
    • /
    • pp.145-153
    • /
    • 2014
  • The improvements of embedded processors make future technologies including wireless sensor network and internet of things feasible. These applications firstly gather information from target field through wireless network. However, this networking process is highly vulnerable to malicious attacks including eavesdropping and forgery. In order to ensure secure and robust networking, information should be kept in secret with cryptography. Well known approach is public key cryptography and this algorithm consists of finite field arithmetic. There are many works considering high speed finite field arithmetic. One of the famous approach is Montgomery multiplication. In this study, we investigated Montgomery multiplication for public key cryptography on embedded microprocessors. This paper includes helpful information on Montgomery multiplication implementation methods and techniques for various target devices including 8-bit and 16-bit microprocessors. Further, we expect that the results reported in this paper will become part of a reference book for advanced Montgomery multiplication methods for future researchers.

A Design of Secure Communication Architecture Applying Quantum Cryptography

  • Shim, Kyu-Seok;Kim, Yong-Hwan;Lee, Wonhyuk
    • Journal of Information Science Theory and Practice
    • /
    • v.10 no.spc
    • /
    • pp.123-134
    • /
    • 2022
  • Existing network cryptography systems are threatened by recent developments in quantum computing. For example, the Shor algorithm, which can be run on a quantum computer, is capable of overriding public key-based network cryptography systems in a short time. Therefore, research on new cryptography systems is actively being conducted. The most powerful cryptography systems are quantum key distribution (QKD) and post quantum cryptograph (PQC) systems; in this study, a network based on both QKD and PQC is proposed, along with a quantum key management system (QKMS) and a Q-controller to efficiently operate the network. The proposed quantum cryptography communication network uses QKD as its backbone, and replaces QKD with PQC at the user end to overcome the shortcomings of QKD. This paper presents the functional requirements of QKMS and Q-Controller, which can be utilized to perform efficient network resource management.

A Method for Data Security in Computer Network (컴퓨터 네트워크의 데이터 보호방식)

  • 류수항;최병욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.3
    • /
    • pp.6-10
    • /
    • 1985
  • In this paper, we describes a cryptography, which is a useful method for data security in computer network and file protection on multi-user operating system, This system manages the keys of conventional cryptography with public key cryptography. As a result, we can obtain high speed encryption, easy manipulation in key management and signatured text by new authentication.

  • PDF

Certificateless Public Key Encryption Revisited: Security Model and Construction (무인증서 공개키 암호 기법의 재고: 안전성 모델 및 설계)

  • Kim, Songyi;Park, Seunghwan;Lee, Kwangsu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1109-1122
    • /
    • 2016
  • Certificateless public key cryptography is a technique that can solve the certificate management problem of a public key cryptosystem and clear the key escrow issue of ID-based cryptography using the public key in user ID. Although the studies were actively in progress, many existing schemes have been designed without taking into account the safety of the secret value with the decryption key exposure attacks. If previous secret values and decryption keys are exposed after replacing public key, a valid private key can be calculated by obtaining the partial private key corresponding to user's ID. In this paper, we propose a new security model which ensures the security against the key exposure attacks and show that several certificateless public key encryption schemes are insecure in the proposed security model. In addition, we design a certificateless public key encryption scheme to be secure in the proposed security model and prove it based on the DBDH(Decisional Bilinear Diffie-Hellman) assumption.

A Study on the Certification System in Electromic Commerce (전자상거래(電子商去來)의 인증체계(認證體系)에 관한 고찰(考察))

  • Ha, Kang Hun
    • Journal of Arbitration Studies
    • /
    • v.9 no.1
    • /
    • pp.367-390
    • /
    • 1999
  • The basic requirements for conducting electronic commerce include confidentiality, integrity, authentication and authorization. Cryptographic algorithms, make possible use of powerful authentication and encryption methods. Cryptographic techniques offer essential types of services for electronic commerce : authentication, non-repudiation. The oldest form of key-based cryptography is called secret-key or symmetric encryption. Public-key systems offer some advantages. The public key pair can be rapidly distributed. We don't have to send a copy of your public key to all the respondents. Fast cryptographic algorithms for generating message digests are known as one-way hash function. In order to use public-key cryptography, we need to generate a public key and a private key. We could use e-mail to send public key to all the correspondents. A better, trusted way of distributing public keys is to use a certification authority. A certification authority will accept our public key, along with some proof of identity, and serve as a repository of digital certificates. The digital certificate acts like an electronic driver's license. The Korea government is trying to set up the Public Key Infrastructure for certificate authorities. Both governments and the international business community must involve archiving keys with trusted third parties within a key management infrastructure. The archived keys would be managed, secured by governments under due process of law and strict accountability. It is important that all the nations continue efforts to develop an escrowed key in frastructure based on voluntary use and international standards and agreements.

  • PDF

Certificate-Based Encryption Scheme without Pairing

  • Yao, Ji;Li, Jiguo;Zhang, Yichen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1480-1491
    • /
    • 2013
  • Certificate-based cryptography is a new cryptographic primitive which eliminates the necessity of certificates in the traditional public key cryptography and simultaneously overcomes the inherent key escrow problem suffered in identity-based cryptography. However, to the best of our knowledge, all existed constructions of certificate-based encryption so far have to be based on the bilinear pairings. The pairing calculation is perceived to be expensive compared with normal operations such as modular exponentiations in finite fields. The costly pairing computation prevents it from wide application, especially for the computation limited wireless sensor networks. In order to improve efficiency, we propose a new certificate-based encryption scheme that does not depend on the pairing computation. Based on the decision Diffie-Hellman problem assumption, the scheme's security is proved to be against the chosen ciphertext attack in the random oracle. Performance comparisons show that our scheme outperforms the existing schemes.

A Study on the Performance Evaluation of Elliptic Curve Cryptography based on a Real Number Field (실수체 기반 타원곡선 암호의 성능 평가에 관한 연구)

  • Woo, Chan-Il;Goo, Eun-Hee;Lee, Seung-Dae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1439-1444
    • /
    • 2013
  • Recently, as the use of the applications like online banking and stock trading is increasing by the rapid development of the network, security of data content is becoming more and more important. Accordingly, public key or symmetric key encryption algorithm is widely used in open networks such as the internet for the protection of data. Generally, public key cryptographic systems is based on two famous number theoretic problems namely factoring or discrete logarithm problem. So, public key cryptographic systems is relatively slow compared to symmetric key cryptography systems. Among public key cryptographic systems, the advantage of ECC compared to RSA is that it offers equal security for a far smaller key. For this reason, ECC is faster than RSA. In this paper, we propose a efficient key generation method for elliptic curve cryptography system based on the real number field.