
 145

I. INTRODUCTION

Public key cryptography applications are commonly used

for secure and robust network services. To implement the

related protocols, we need to design efficient cryptographic

arithmetic operations over finite fields. Among these field

arithmetic operations, multi-precision multiplication and

squaring are the most expensive ones; therefore, we need to

focus on an optimal implementation of these operations for

resource-constrained devices, such as RFID and sensor

networks. Many multiplication and squaring methods have

been proposed thus far to reduce execution time and

computational cost by optimizing the number of memory

access and arithmetic operations. In the case of multi-

precision multiplication, first, a school-book method called

operand scanning, which loads all operands in a row and

computes the result simultaneously, is directly implemented

on embedded microprocessors. The alternative product

scanning method computes all partial products in a column

and does not need reload the intermediate results [1]. The

hybrid method combines the useful features of both operand

scanning and product scanning [2]. By adjusting the row

and column widths, we can reduce the number of operand

accesses and result updates. This method has an advantage

over a microprocessor equipped with many general-purpose

registers. In Workshop on CHES 2011, an operand caching

method, which reduces the number of load operations by

caching the operands, was presented [3]. Later, on the basis

of this operand caching method, Seo and Kim [4] proposed

the consecutive operand caching method, which is a conti-

Received 25 March 2014, Revised 10 April 2014, Accepted 25 June 2014
*Corresponding Author Howon Kim (E-mail: howonkim@pusan.ac.kr, Tel: +82-51-510-1010)
Department of Computer Engineering, Pusan National University, 60 Unbong-gil, Haeundae-gu, Busan 609-735, Korea.

 http://dx.doi.org/10.6109/jicce.2014.12.3.145 print ISSN: 2234-8255 online ISSN: 2234-8883

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/li­censes/by-

nc/3.0/) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

Copyright ⓒ The Korea Institute of Information and Communication Engineering

J. lnf. Commun. Converg. Eng. 12(3): 145-153, Sep. 2014 Regular paper

Study of Modular Multiplication Methods for Embedded
Processors

Hwajeong Seo and Howon Kim*, Member, KIICE

Department of Computer Engineering, Pusan National University, Busan 609-735, Korea

Abstract

The improvements of embedded processors make future technologies including wireless sensor network and internet of things

feasible. These applications firstly gather information from target field through wireless network. However, this networking

process is highly vulnerable to malicious attacks including eavesdropping and forgery. In order to ensure secure and robust

networking, information should be kept in secret with cryptography. Well known approach is public key cryptography and this

algorithm consists of finite field arithmetic. There are many works considering high speed finite field arithmetic. One of the

famous approach is Montgomery multiplication. In this study, we investigated Montgomery multiplication for public key

cryptography on embedded microprocessors. This paper includes helpful information on Montgomery multiplication

implementation methods and techniques for various target devices including 8-bit and 16-bit microprocessors. Further, we

expect that the results reported in this paper will become part of a reference book for advanced Montgomery multiplication

methods for future researchers.

Index Terms: AVR, Embedded Processors, MSP, Montgomery Multiplication, Optimal Prime Field, Public Key Cryptography

Open Access

mailto:howonkim@pusan.ac.kr

J. lnf. Commun. Converg. Eng. 12(3): 145-153, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.145 146

nuous operand caching process.

With respect to an efficient multi-precision squaring

operation, most of the proposed multiplication methods

can be directly applied to squaring; nevertheless, doing so

is not a very good idea as it is not necessary to compute all

partial products and load both operands for the squaring

operation. The first of these squaring methods is based on

operand scanning for a hardware environment [5]. However,

an embedded software implementation is conducted on

resource-constrained devices, and thus, a long word size-

based hardware approach is not favorable. Thereafter, a

carry-catcher squaring method was developed; this method

removes the carry propagation, thereby generating carry

values to the most significant byte position in a word-to-

word multiplication by introducing a storage for saving the

carry values [6]. In 2012, the lazy doubling method, the

fastest squaring algorithm thus far, was proposed in [7]. In

this technique, the byte-wise multiplication results, which

should be added twice, are doubled after they are collected

in the accumulation registers at the end of each column

computation. In [8], the sliding block doubling method

was proposed. This method delayed the doubling process

to the very end of the execution and the remaining partial

products were executed with the doubling process.

The main difference between plain multiplication and

modular multiplication is that modular multiplication and

squaring computations go through a reduction process after

completing the multiplication or squaring computations. A

widely used reduction algorithm is Montgomery reduction.

This method efficiently replaces a reduction operation by

a multiplication operation. Ordinary Montgomery multi-

plication is efficient for the RSA cryptosystem, but this

method is not favorable for elliptic curve cryptography

(ECC) because multiplication is more expensive than fast

reduction. Recently, optimal prime field-based Montgomery

multiplication was proposed. This method overcomes the

drawbacks of normal Montgomery multiplication for ECC

by introducing a low-hamming-weight finite field. As a

result, many multiplication operations are removed and the

multiplications are simply replaced by addition.

The rest of this paper is organized as follows: in

Sections II and III, we explore the core operations of

Montgomery multiplication, namely multi-precision multi-

plication and squaring. In Sections IV and V, we discuss

Montgomery multiplication and optimal prime field

Montgomery multi-plication, respectively. In Section VI,

we evaluate the performance of the abovementioned

methods on various platforms. Finally, in Section VII, we

conclude this paper.

II. MULTI-PRECISION MULTIPLICATION

In this section, we introduce various multi-precision

multiplication techniques, including operand scanning,

product scanning, hybrid scanning, operand caching, and

consecutive operand caching. Each method has unique

features for reducing the number of load and store

instructions and arithmetic operations. To describe the

multi-precision multiplication method, we use the following

notations. Let A and B be two operands with a length of m

bits that are represented by multiple-word arrays. Each

operand is written as follows: A = (A[n - 1], A[2], A[1], A[0])

and B = (B[n - 1], B[2], B[1], B[0]), where n = ⌈m/w⌉ and

w denotes the word size. The result of the multiplication is

twice as large as operand C = (C[2n - 1], C[2], C[1], C[0]).

For the sake of clarity, we describe the abovementioned

method by using a multiplication structure and rhombus

form. As shown in Fig. 1, each point represents a

multiplication A[i] × B[j]. The rightmost corner of the

rhombus represents the lowest indices (i, j = 0), whereas the

leftmost corner represents the highest indices (i, j = n - 1).

The lowermost side represents the result indices C[k], which

range from the rightmost corner (k = 0) to the leftmost

corner (k = 2n - 1). Fig. 1(a) shows the operand scanning

method that consists of two parts, namely inner and outer

loops. In the inner loop, operand A[i] holds a value and

computes the partial product with all multiple values of the

multiplicand B[j] (j = 0, n - 1). While in the outer loop, the

index of operand A[i] increases by a word size, and then, the

inner loop is executed. Fig. 1(b) shows the product scanning,

which computes all partial products in the same column by

multiplication and addition [1]. Since each partial product in

the column is computed and then accumulated, registers are

not needed for intermediate results. The results are stored

once, and the stored results are not reloaded because all

computations have already been completed. Fig. 1(c) shows

the hybrid scanning method, which combines the useful

features of operand scanning and product scanning [2].

Multiplication is performed on a block scale by using

product scanning. The number of rows within the block is

defined as d, and the inner block partial products follow the

operand scanning rule. Therefore, this method reduces the

number of load instructions by sharing the operands within

the block. Fig. 1(d) shows the operand caching method,

which follows the product scanning method, but it divides

the calculation into several row sections [3]. By reordering

the sequence of inner and outer row sections, we reused the

previously loaded operands in the working registers for the

next partial products. A few store instructions are added, but

the number of required load instructions is reduced. The

number of row sections is given by r = ⌊n/e⌋, and e denotes

the number of words used for caching digits in the operand.

Fig. 1(e) shows the consecutive operand caching method,

Study of Modular Multiplication Methods for Embedded Processors

http://jicce.org 147

which is based on the characteristics of operand caching.

The previous method has to reload operands whenever a

row is changed, which generates an unnecessary overhead.

To avoid these shortcomings, this method provides a contact

point among rows that share the common operands for

partial products. As a result, one side of the operands is

continuously maintained in the registers and used [4].

(a)

(b)

(c)

(d)

(e)

Fig. 1. (a) Operand scanning multiplication, (b) product scanning

multiplication, (c) hybrid scanning multiplication, (d) operand caching
multiplication, and (e) consecutive operand caching multiplication.

III. MULTI-PRECISION SQUARING

The squaring method can be implemented using the

existing multiplication techniques because squaring requires

almost the same operations as those required for

multiplication, such as memory access and arithmetic

operations. However, there are two main differences

between multiplication and squaring; these are illustrated in

Fig. 2. First, only one operand (A) is used for the squaring

computation; therefore, the operand load is reduced to half

of that in the case of multiplication and many registers that

were previously used for operand holding are assigned the

idle status and can be used for caching intermediate results

or other values. Second, some duplicate partial products

exist. In Fig. 2, the squaring structure consists of three parts,

namely a red dotted middle part and light and dark gray

triangle parts. The red part denotes the multiplication of the

same operand, which is computed once. The other parts,

namely the light and dark gray parts, generate the same

partial product results. Therefore, these parts are multiplied

once and added twice to the intermediate results. This

computation generates the correct results, as expected. After

removing the duplicate partial product results, we can

describe the squaring structure as a triangular form, as

shown in Fig. 2. Fig. 3(a) describes Yang et al.’s method [5].

This squaring method is intended for a hardware machine

and not for a software implementation. Therefore, the

software implementation has several disadvantages, such as

an insufficient number of general-purpose registers to store

all operands, carry-catcher values, and intermediate results

obtained during partial product computations using operand

scanning. Furthermore, reloading and restoring the inter-

mediate results for doubling require many memory access

operations. Thus, the straight-forward implementation of the

squaring method used for hardware is not recommended for

software. Prime field multiplication consists of a number of

partial products. When we compute partial products in an

ascending order, intermediate results generate carry values,

accumulating the partial product results. Traditionally, carry

values spread to the end of the intermediate results, as

shown in Fig. 4(a). This case continuously updates the result

register (r6_r0), and therefore, the addition arithmetic is

used many times. To reduce the overhead, the carry-catcher

method for storing carry values to additional registers

(c6_c0), was presented in [6] and is illustrated in Fig. 4(b).

The carry-catching registers are immediately updated at

the end of a computation. The carry-catcher-based squaring,

illustrated in Fig. 3(b), was introduced in [6]. This method

follows hybrid scanning and doubles the partial product

results before they are added to the results. This method is

inefficient because all products need to be doubled. The lazy

doubling method, shown in Fig. 3(c), is an efficient

doubling method and is described in detail in [7].

J. lnf. Commun. Converg. Eng. 12(3): 145-153, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.145 148

(a)

(b)

Fig. 2. (a) Multi-precision squaring structure, before removing duplicate

partial product results, and (b) multi-precision squaring structure, after
removing duplicate partial product results.

(a)

(b)

(c)

(d)

Fig. 3. (a) Yang et al. [5] squaring, (b) carry-catcher squaring, (c) lazy

doubling squaring, and (d) sliding block doubling squaring.

This method also follows a hybrid scanning structure;

therefore, the constant size of the operands and the inner

structure is computed and the carry-catcher method is used

for removing the consecutive carry updates. An important

advantage of this method is the doubling process, which is

delayed to the end of the inner structure and then computed.

(a) (b)

Fig. 4. Carry computation techniques. (a) Carry-propagation and (b)

carry-catcher.

This method reduces the number of arithmetic operations

by conducting doubling computations on the accumulated

intermediate results. This technique significantly reduces the

number of doubling processes to 1. In [8], the sliding block

doubling method is proposed. This method delays the

doubling process to the very end of the implementation and

the remaining partial products are executed with the

doubling process. Since the doubling operation is conducted

with the accumulated results, the number of arithmetic

operations is efficiently reduced.

IV. MONTGOMERY MULTIPLICATION

The Montgomery algorithms were first proposed in 1985

[9]. Montgomery algorithms avoid division in modular

multiplication and reduction by introducing simple shift

operations. Given two integers A and B and the modulus M,

to compute the product P = A ∙ B mod M, in the

Montgomery method, the original operands A and B are

converted into the Montgomery domain, A′ = A ∙ R mod M

and B′ = B ∙ R mod M. For efficient computation, the

Montgomery residue R is selected as a power of 2 and the

constant M′ = −𝑀−1 mod 2𝑛 is pre-computed. To

compute the product, the following three steps are

performed: P = A ∙ B , Q = P ∙ M′ mod 2𝑛 , Z = (P +

QM)/2𝑛 . There are many variants of the Montgomery

method. In Fig. 5, we illustrate the basic structure of

Montgomery multiplication. In order to appropriately

describe Montgomery multiplication, we introduce the

double rhombus form.

The upper rhombus represents Montgomery multi-

plication and the under rhombus, Montgomery reduction. To

distinguish both computations, we have denoted the product

process in dark gray and the reduction process in white.

Montgomery multiplication has two main modes. The first

mode is the separated version shown in Fig. 5(a) and (b).

This method separates the multiplication and the reduction

processes. The second mode is the interleaving version

shown in Fig. 5(c)–(f). This model combined multiplication

and reduction. If multiplication and reduction are partly

integrated, we call the mode the coarsely integrated mode,

and if the operations are fully integrated, we call the mode

Study of Modular Multiplication Methods for Embedded Processors

http://jicce.org 149

the finely integrated mode. The first separated operand

scanning (SOS) method computes the products and the

reduction result separately.

The multiplication structure is simple, but the perfor-

mance is highly degraded because the operand scanning

method frequently accesses the memory to load or store the

intermediate results and operands. The separated product

scanning method performs the product scanning method for

multiplication and reduction processes separately. As

compared to that in SOS, in this method, the required

number of registers is small; therefore, this method is a

better choice when it comes to register-constrained devices.

The coarsely integrated operand scanning (CIOS) method

improves the previous SOS method by integrating the

multiplication and reduction steps. Instead of computing all

the full multiplication processes separately, the multiplication

and reduction steps are alternated in every loop. With this

technique, we can update the intermediate results more

efficiently. In the case of CIOS, two inner loops are

computed, but the finely integrated operand scanning (FIOS)

method integrates the two inner loops of multiplication and

reduction and computes one inner loop. This method

reduces intermediate result load and store operations by

computing all results at the intermediate stages. The finely

integrated product scanning (FIPS) method is used for

performing product scanning multiplication and reduction in

the integrated model. This method does not reload the

intermediate results; therefore, it is more efficient than the

FIOS method. The coarsely integrated hybrid scanning

method adopts hybrid multiplication.

The first half of the multiplication is conducted with

product scanning; then, multiplication and reduction are

coarsely integrated in the operand scanning methods.

Recently, [10] discussed the performance of different

Montgomery multiplications on an 8-bit AVR microcontroller

and analyzed the exact computation complexity at the

instruction level. The authors of [10] discussed different

hybrid Montgomery multiplication algorithms, including

hybrid finely integrated product scanning (HFIPS), and

introduced a novel approach for Montgomery multiplication,

which we call hybrid separated product scanning (HSPS).

This method finely reschedules the inner structure to reduce

the number of data transfer instructions.

V. OPTIMAL PRIME FIELD MONTGOMERY
MULTIPLICATION

A special family of prime fields, called optimal prime

field (OPF), was proposed in [11]. The n-bit OPF primes

have the following form: M = u ∙ 2k + 𝑣. Let u and v be

relatively small coefficients as compared to 2k; u is either 8-

bit or 16-bit long, and v is several bits long.

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Montgomery multiplication: (a) Separated operand scanning, (b)

separated product scanning, (c) coarsely integrated operand scanning, (d)
finely integrated operand scanning, (e) finely integrated product scanning,
and (f) coarsely integrated hybrid scanning.

Character k denotes n - m ∙ w, where m denotes a small

integer, and m ∙ w represents the size of u. The OPF in [11]

set u as a 16-bit-long integer and v as 1; this is formalized as

M = u ∙ 2𝑛−16 + 1. Most of the OPF prime bits are 0 except

a few bits in the most and least significant words. Due to the

low hamming weight of OPF, Montgomery multiplication is

considerably simpler than its ordinary counterparts. To

describe the OPF model, we introduced two colored dots in

Fig. 6. The first yellow dot describes the addition of Q to the

intermediate results because parameter M has one in the

least significant bit, which is computable with a simple

addition operation instead of partial products. In the case of

the white dot, 16-bit partial products Q ∙ M are added to the

intermediate results. The various curves including

Weierstraß, twisted Edwards curve, and GLV using OPF are

reported in [12, 13].

160 bit: 52542 × 2144 + 1

 0XCD3E000000000000000000000000000000000001

192 bit: 55218 × 2176 + 1

0XD7B2000

001

J. lnf. Commun. Converg. Eng. 12(3): 145-153, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.145 150

(a) (b)

(c) (d)

(e)

Fig. 6. Montgomery multiplication: (a) Separated operand scanning, (b)

separated product scanning, (c) coarsely integrated operand scanning, (d)
finely integrated operand scanning, (e) finely integrated product scanning,
and (f) coarsely integrated hybrid scanning.

224 bit: 50643 × 2208 + 1

0XC5D3000

00000000001

256 bit: 37266 × 2240 + 1

0X919200

000000000000000001

OPF-based Montgomery multiplication can exploit an

ordinary Montgomery method without difficulty. Among the

straightforward adoptions of the previous methods, OPF-

FIPS finely combines multiplication and reduction and

reports the highest performance because the results are

located in the same column, which removes the duplicate

intermediate load or store operations.

VI. EVALUATION

A. Evaluation on 8-bit Platform AVR

In this section, we will describe the performance

evaluation using an 8-bit AVR processor. The embedded

processor is equipped with an ATmega128 8-bit processor

clocked at 7.3728 MHz. It has a 128-kB EEPROM chip and

a 4-kB RAM chip [14]. The ATmega128 processor has the

RISC architecture with 32 registers. Among them, 6

registers (r26–r31) serve as special pointers for indirect

addressing. The remaining 26 registers are available for

arithmetic operations. One arithmetic instruction incurs one

clock cycle, and memory instructions or 8-bit multiplication

operations incur two processing cycles.

The comparison results of multiplication are presented in

Table 1. In the case of the operand scanning (OS) method,

intermediate results are retained in registers; therefore,

operands are not cached in the registers and reloaded several

times from the memory to the register. As described earlier,

memory operations are the most expensive operations in

RISC processors and degrade performance significantly.

The alternative product scanning (PS) method reduces the

number of store instructions required by using column-wise

multiplication. This architecture avoids a high overhead to

retain intermediate results on general-purpose registers. The

remaining registers are efficiently used for caching operands.

Thereafter, a hybrid scanning method that combines the

efficient architectures of the previous OS and PS

methods was proposed in [2]. This method adjusts the

column and row widths to fit into a number of general-

purpose registers in the embedded processors. There are

several hybrid scanning (HS) variants proposed in other

papers, and small improvements were achieved in each of

these papers. In CHES 2011, an operand caching method

that caches operands in a row and significantly reduces the

computational cost is proposed [3]. In Workshop on

Information Security Applications 2012, an advanced

operand caching (OC) method, called consecutive operand

caching (COC), was presented; this method caches operands

from the first row to the last row [4]. In the case of squaring,

this distinct structure can be exploited to improve the

performance significantly. Firstly, the operand scanning

method is directly applied to the squaring method. This is

faster than OS multiplication but slower than an advanced

multi-plication method because of the requirement to store a

large number of intermediate results. In [6, 7], duplicate

parts are efficiently doubled with simple shift or addition.

Further improvements are achieved in [19]. This method

fully accumulates all the intermediate results and then

doubles the parts with a simple shift operation; thus, the

number of multiplication and arithmetic operations is

decreased.

In terms of Montgomery multiplication, there are three

representative results. First, TinyECC is the most referenced

work and provides several ECC primitives over TinyOS

[15]. The researchers of [15] adopted fast reduction for a

modular operation. This technique is more efficient than any

other method because programmers can hardcode the

reduction process by following the target curves; however,

Study of Modular Multiplication Methods for Embedded Processors

http://jicce.org 151

this is not scalable architecture. In [16], a Karatsuba-based

Montgomery method is introduced. This method exploits

the features of the Karatsuba algorithm to reduce the

number of required clock cycles. Recently, in [10], novel

HSPS and HFIPS methods were presented. These methods

redesign the inner loops to reduce the number of mov

instructions and show the fastest performance ever achieved.

The detailed clock cycle is presented in Table 2.

Alternative OPF-Montgomery multiplication has a low

hamming weight than ordinary Montgomery multiplication.

These methods exploit the FIPS method for the OPF-

Montgomery method. The direct implementation shows

significant performance enhancements, and the squaring

method shows a higher performance than the multiplication

method. The detailed clock cycle is presented in Table 3.

Table 1. Comparison of multiplication results in case of 160-bit unrolled

version

Inst add mul ld st mov
Other Total

CPI 1 2 2 2 1

Multiplication

OS 1600 400 820 440 42 466 5428

PS 1200 400 800 40 81 44 3805

[2] 1360 400 167 40 355 197 3106

[21] 986 400 238 40 355 184 2881

[6] 1263 400 200 40 70 38 2651

[23] 1194 400 200 40 212 179 2865

[22] 1092 400 200 40 202 271 2845

[10] 1092 400 200 40 202 244 2818

[3] 1240 400 80 60 2 68 2395

[4] 1240 400 70 60 n/a 56 2356

Squaring

[5] 909 210 468 280 n/a 284 3009

[6] 1265 210 100 40 n/a 100 2065

[7] 804 210 51 40 n/a 103 1509

[8] 671 210 58 81 n/a 87 1456

Table 2. Different length Montgomery multiplication execution time

(clock cycles)

Library 160 192 224 256

TinyECC [15] 14929 20060 25765 n/a

MIRACL (KCM) [16] 7753 10653 14033 17761

HSPS [10] 6648 9171 12110 15465

HFIPS [10] 6080 8539 11420 14723

Table 3. Execution time (in cycles) of OPF-Montgomery multiplication

and squaring in 160-bit on AVR

Library Multiplication Squaring

GroBschadl et al. [13] 5239 4086

Chu et al. [12] 3588 3032

Table 4. Comparison of Comba multiplication, variants of hybrid

multiplication, and operand caching multiplication

Inst CPI
 [19] [18] [20]

Inst Cycle Inst Cycle Inst Cycle

add @reg,

reg
2 99 198

addc &label,

reg
3 135 405

Other 309 709 51 51

mov @reg+,

reg
2 12 24

mov X(reg),

&label
6 20 120 45 270 1 6

mov reg,

X(reg)
4 20 80 19 76

mov reg, reg 1 27 27

mov reg,

&label
4 89 356 100 400 101 404

mov X(reg),

reg
3 13 39 45 135 3 9

mov @reg+,

&label
5 100 500 54 270

mov @reg,

&label
5 29 145 50 250

mov @reg,

X(reg)
5 20 100

Others 128 167

Total 1586 1746 1495

B. Evaluation on 16-bit Platform MSP430X

MSP430 is a representative 16-bit processor board with a

clock frequency of 8 MHz [17], 32- to 48-kB ash memory,

10-kB RAM, and 12 general-purpose registers from r4 to

r15 available. Among them, 2 registers serve as special

pointers for indirect addressing, 4 registers for intermediate

results, and the remaining 6 registers for operand caching.

Unlike the AVR series, MSP430 provides an embedded 16-

bit hardware multiplier that computes 16-bit real-number

multiplication and multiplication and accumulation (MAC).

In the MAC mode, values are multiplied and accumulated

into the same location in the internal memory, yielding the

final result at the same location. The latest target board, the

MSP430X, operates at a higher clock frequency of 16–20

MHz and provides 32-bit multiplication. To perform

multiplication, the multiplication mode is selected by

allocating operands to memory maps among MPY32L,

MPYS32L, MAC32L, and MACS32L. These denote

multiplication modes including signed multiplication, MAC,

and signed MAC. The MAC mode preserves intermediate

results in the inner memory from RES0 to RES3. Only the

SUMEXT value, a 65-bit result, is not maintained; therefore,

it needs to be stored into a register every session. The

multiplication and squaring results are presented in Table 4.

J. lnf. Commun. Converg. Eng. 12(3): 145-153, Sep. 2014

http://dx.doi.org/10.6109/jicce.2014.12.3.145 152

Table 5. Comparison of Comba multiplication, variants of hybrid

multiplication, and operand caching multiplication

Algo
160-bit 256-bit

[17] X[17] 32[17] 32[24] [17] X[17] 32[17]

Mul 1565 1299 741 615 3563 2981 1620

Sqr 1350 1056 630 n/a 2946 2435 1369

Mont 1659 n/a n/a n/a 3600 n/a n/a

Mont,s 1413 1174 853 n/a 2670 2232 1695

First, the hybrid method is applied to upgrade performance

[18]. This shows a high performance, but the latter method

proposed in [19] is finely upgraded by exploiting the MAC

method. This function finely accumulates all the

intermediate results and updates the results immediately.

Further improvements are described in [20]. The authors

of [20] use fine register assignments to reduce the number

of memory access operations. In the case of Montgomery

multiplication, there is only one result available and the

algorithm exploits the MAC-based product scanning

methods. The results are presented in Table 5. In [17], the

authors presented PS-based Montgomery multiplication. Its

performance is better in a sparse form because this case

reduces the number of arithmetic operations. Furthermore,

the squaring method is faster than the multiplication method

because of the duplicate partial products discussed in the

previous section.

VII. DISCUSSION

In this paper, we reviewed several Montgomery multi-

plication methods on embedded processors. Each embedded

processor has a specific architecture; therefore, the multi-

plication method should be carefully selected to achieve a

high performance. In Table 4, we present the current state-

of-the-art methods and candidate fields, which imply that

there is room to improve performance by adopting advanced

multiplication/squaring methods. In the case of ATmega, the

most advanced multiplication and squaring methods are

COC(Consecutive Operand Caching) and SBD(Sliding

Block Doubling), respectively. However, for Montgomery

multiplication, the PS method is still actively exploited.

Therefore, we can expect performance enhancement by

applying these advanced multiplication and squaring methods

to Montgomery methods. In the case of MSP, because of the

use of an advanced MAC method, the PS method is the best

choice; therefore, all the implementations are conducted

with the PS method. However, there are newly released

methods including COC and SBD available. Furthermore,

OPF-Montgomery multiplication and squaring have not yet

been studied carefully. Therefore, we can apply PS, COC, or

SBD to improve the performance.

VIII. CONCLUSION

Public key cryptography is widely used for key dis-

tribution and digital signature. However, high computational

complexity is not practical for resource-constrained devices

such as embedded processors. To accelerate performance in

terms of speed, most expensive operations, such as finite

field multiplication and squaring, should be considered. In

this study, we explored various Montgomery algorithms on

embedded microprocessors and analyzed each method in

detail. In the evaluation part, we suggested several research

topics that have not yet been studied carefully. This paper

includes a discussion of a wide range of Montgomery

multiplication methods for embedded microprocessors and

would be a good reference paper for future researchers.

ACKNOWLEDGMENTS

This work was supported by the ICT R&D program of

MSIP/IITP (No. 10043907, Development of High-Perfor-

mance IoT Device and Open Platform with Intelligent

Software).

REFERENCES

[1] P. G. Comba, “Exponentiation cryptosystems on the IBM PC,”

IBM Systems Journal, vol. 29, no. 4, pp. 526-538, 1990.

[2] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,

“Comparing elliptic curve cryptography and RSA on 8-bit CPUs,”

in Cryptographic Hardware and Embedded Systems-CHES 2004.

Heidelberg: Springer, pp. 119-132, 2004.

[3] M. Hutter and E. Wenger, “Fast multi-precision multiplication for

public-key cryptography on embedded microprocessors,” in

Cryptographic Hardware and Embedded Systems–CHES 2011.

Heidelberg: Springer, pp. 459-474, 2011.

[4] H. Seo and H. Kim, “Multi-precision multiplication for public-key

cryptography on embedded microprocessors,” in Information

Security Applications. Heidelberg: Springer, pp. 55-67, 2012.

[5] P. Y. Hsieh and C. S. Laih, “An exception handling model and its

application to the multiple-precision integer library,” Doctoral

dissertation, 2003.

[6] M. Scott and P. Szczechowiak, Optimizing multiprecision

multiplication for public key cryptography [Internet], Available:

https://eprint.iacr.org/2007/299.pdf.

[7] Y. Lee, I. H. Kim, and Y. Park, “Improved multi-precision

squaring for low-end RISC microcontrollers,” Journal of Systems

and Software, vol. 86, no. 1, pp. 60-71, 2013.

[8] H. Seo, Z. Liu, J. Choi, and H. Kim, “Multi-precision squaring for

public-key cryptography on embedded microprocessors,” in

Progress in Cryptology–INDOCRYPT 2013. Heidelberg: Springer,

pp. 227-243, 2013.

https://eprint.iacr.org/2007/299.pdf

Study of Modular Multiplication Methods for Embedded Processors

http://jicce.org 153

[9] P. L. Montgomery, “Modular multiplication without trial division,”

Mathematics of Computation, vol. 44, no. 170, pp. 519-521, 1985.

[10] Z. Liu and J. Großschädl, “New speed records for montgomery

modular multiplication on 8-bit AVR microcontrollers,” in

Progress in Cryptology–AFRICACRYPT 2014. Heidelberg: Springer,

pp. 215-234, 2014.

[11] J. Großschädl, “TinySA: a security architecture for wireless sensor

networks,” in Proceedings of the 2006 ACM Conference on

Emerging Network Experiment and Technology (CoNEXT), Lisboa,

Portugal, article no. 55, 2006.

[12] D. Chu, J. Großschädl, Z. Liu, V. Müller, and Y. Zhang, “Twisted

edwards-form elliptic curve cryptography for 8-bit AVR-based

sensor nodes,” in Proceedings of the 1st ACM Workshop on Asia

Public-Key Cryptography, Hangzhou, China, pp. 39-44, 2013.

[13] J. Großschädl, M. Hudler, M. Koschuch, M. Krüger, and A.

Szekely, “Smart elliptic curve cryptography for smart dust,” in

Quality, Reliability, Security and Robustness in Heterogeneous

Networks. Heidelberg: Springer, pp. 623-634, 2012.

[14] J. L. Hill and D. E. Culler, “Mica: a wireless platform for deeply

embedded networks,” IEEE Micro, vol. 22, no. 6, pp. 12-24, 2002.

[15] A. Liu and P. Ning, “TinyECC: a configurable library for elliptic

curve cryptography in wireless sensor networks,” in Proceedings

of the International Conference on Information Processing in

Sensor Networks, St. Louise, MO, pp. 245-256, 2008.

[16] CertiVox Corporation, CertiVox MIRACL SDK source code,

http://www.certivox.com.

[17] C. P. Gouvêa, L. B. Oliveira, and J. López, “Efficient software

implementation of public-key cryptography on sensor networks

using the MSP430X microcontroller,” Journal of Cryptographic

Engineering, vol. 2, no. 1, pp. 19-29, 2012.

[18] P. Szczechowiak, A. Kargl, M. Scott, and M. Collier, “On the

application of pairing based cryptography to wireless sensor

networks,” in Proceedings of the 2nd ACM Conference on

Wireless Network Security, Zurich, Switzerland, pp. 1-12, 2009.

[19] C. P. Gouvêa and J. López, “Software implementation of pairing-

based cryptography on sensor networks using the MSP430

microcontroller,” in Progress in Cryptology-INDOCRYPT 2009.

Heidelberg: Springer, pp. 248-262, 2009.

[20] H. Seo, K. A. Shim, and H. Kim, “Performance enhancement of

TinyECC based on multiplication optimizations,” Security and

Communication Networks, vol. 6, no. 2, pp. 151-160, 2013.

[21] L. Uhsadel, A. Poschmann, and C. Paar, “Enabling full-size

public-key algorithms on 8-bit sensor nodes,” in Security and

Privacy in Ad-hoc and Sensor Networks. Heidelberg: Springer, pp.

73-86, 2007.

[22] Y. Zhang and J. Grossschadl, “Efficient prime-field arithmetic for

elliptic curve cryptography on wireless sensor nodes,”

in Proceedings of the 1st International Conference on Computer

Science and Network Technology (ICCSNT), Harbin, China, pp.

459-466, 2011.

[23] Z. Liu, J. Großschädl, and I. Kizhvatov, “Efficient and side-

channel resistant RSA implementation for 8-bit AVR

microcontrollers,” in Proceedings of the 1st International

Workshop on the Security of the Internet of Things, Tokyo, Japan,

pp. 1-10, 2010.

[24] H. Seo, Y. Lee, H. Kim, T. Park, and H. Kim, “Binary and prime

field multiplication for public key cryptography on embedded

microprocessors,” Security and Communication Networks, vol. 7,

no. 4, pp. 774-787, 2014.

Mr. Seo received his BSEE degree from Pusan National University, Pusan, Republic of Korea, in 2010. He also
received his MS in Computer Engineering from Pusan National University. At present, he is working towards his
PhD in Computer Engineering at the same university. His research interests include sensor networks, information
security, elliptic curve cryptography, and RFID security.

Dr. Kim received his BSEE from Kyungpook National University, Daegu, Republic of Korea, in 1993, and his MS and
PhD in Electronic and Electrical Engineering from Pohang University of Science and Technology (POSTECH),
Pohang, Republic of Korea, in 1995 and 1999, respectively. From July 2003 to June 2004, he studied with the COSY
group at the Ruhr-University of Bochum, Germany. Later, he was a senior member of the technical staff at the
Electronics and Telecommunications Research Institute (ETRI), Daejeon, Republic of Korea. He is currently working
as an associate professor with the Department of Computer Engineering, School of Computer Science and
Engineering, Pusan National University, Busan, Republic of Korea. His research interests include RFID technology,
sensor networks, information security, and computer architecture. Currently, his main research focus is on mobile
RFID technology and sensor networks, public key cryptosystems, and their security issues. He is a member of the

IEEE and the International Association for Cryptologic Research (IACR).

http://www.certivox.com/

