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I. INTRODUCTION 
 

Public key cryptography applications are commonly used 

for secure and robust network services. To implement the 

related protocols, we need to design efficient cryptographic 

arithmetic operations over finite fields. Among these field 

arithmetic operations, multi-precision multiplication and 

squaring are the most expensive ones; therefore, we need to 

focus on an optimal implementation of these operations for 

resource-constrained devices, such as RFID and sensor 

networks. Many multiplication and squaring methods have 

been proposed thus far to reduce execution time and 

computational cost by optimizing the number of memory 

access and arithmetic operations. In the case of multi-

precision multiplication, first, a school-book method called 

operand scanning, which loads all operands in a row and 

computes the result simultaneously, is directly implemented 

on embedded microprocessors. The alternative product 

scanning method computes all partial products in a column 

and does not need reload the intermediate results [1]. The 

hybrid method combines the useful features of both operand 

scanning and product scanning [2]. By adjusting the row 

and column widths, we can reduce the number of operand 

accesses and result updates. This method has an advantage 

over a microprocessor equipped with many general-purpose 

registers. In Workshop on CHES 2011, an operand caching 

method, which reduces the number of load operations by 

caching the operands, was presented [3]. Later, on the basis 

of this operand caching method, Seo and Kim [4] proposed 

the consecutive operand caching method, which is a conti-
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nuous operand caching process. 

With respect to an efficient multi-precision squaring 

operation, most of the proposed multiplication methods 

can be directly applied to squaring; nevertheless, doing so 

is not a very good idea as it is not necessary to compute all 

partial products and load both operands for the squaring 

operation. The first of these squaring methods is based on 

operand scanning for a hardware environment [5]. However, 

an embedded software implementation is conducted on 

resource-constrained devices, and thus, a long word size-

based hardware approach is not favorable. Thereafter, a 

carry-catcher squaring method was developed; this method 

removes the carry propagation, thereby generating carry 

values to the most significant byte position in a word-to-

word multiplication by introducing a storage for saving the 

carry values [6]. In 2012, the lazy doubling method, the 

fastest squaring algorithm thus far, was proposed in [7]. In 

this technique, the byte-wise multiplication results, which 

should be added twice, are doubled after they are collected 

in the accumulation registers at the end of each column 

computation. In [8], the sliding block doubling method 

was proposed. This method delayed the doubling process 

to the very end of the execution and the remaining partial 

products were executed with the doubling process. 

The main difference between plain multiplication and 

modular multiplication is that modular multiplication and 

squaring computations go through a reduction process after 

completing the multiplication or squaring computations. A 

widely used reduction algorithm is Montgomery reduction. 

This method efficiently replaces a reduction operation by 

a multiplication operation. Ordinary Montgomery multi-

plication is efficient for the RSA cryptosystem, but this 

method is not favorable for elliptic curve cryptography 

(ECC) because multiplication is more expensive than fast 

reduction. Recently, optimal prime field-based Montgomery 

multiplication was proposed. This method overcomes the 

drawbacks of normal Montgomery multiplication for ECC 

by introducing a low-hamming-weight finite field. As a 

result, many multiplication operations are removed and the 

multiplications are simply replaced by addition. 

The rest of this paper is organized as follows: in 

Sections II and III, we explore the core operations of 

Montgomery multiplication, namely multi-precision multi-

plication and squaring. In Sections IV and V, we discuss 

Montgomery multiplication and optimal prime field 

Montgomery multi-plication, respectively. In Section VI, 

we evaluate the performance of the abovementioned 

methods on various platforms. Finally, in Section VII, we 

conclude this paper. 

 

 

II. MULTI-PRECISION MULTIPLICATION 
 

In this section, we introduce various multi-precision 

multiplication techniques, including operand scanning, 

product scanning, hybrid scanning, operand caching, and 

consecutive operand caching. Each method has unique 

features for reducing the number of load and store 

instructions and arithmetic operations. To describe the 

multi-precision multiplication method, we use the following 

notations. Let A and B be two operands with a length of m 

bits that are represented by multiple-word arrays. Each 

operand is written as follows: A = (A[n - 1], A[2], A[1], A[0]) 

and B = (B[n - 1], B[2], B[1], B[0]), where n = ⌈m/w⌉ and 

w denotes the word size. The result of the multiplication is 

twice as large as operand C = (C[2n - 1], C[2], C[1], C[0]). 

For the sake of clarity, we describe the abovementioned 

method by using a multiplication structure and rhombus 

form. As shown in Fig. 1, each point represents a 

multiplication A[i] × B[j]. The rightmost corner of the 

rhombus represents the lowest indices (i, j = 0), whereas the 

leftmost corner represents the highest indices (i, j = n - 1). 

The lowermost side represents the result indices C[k], which 

range from the rightmost corner (k = 0) to the leftmost 

corner (k = 2n - 1). Fig. 1(a) shows the operand scanning 

method that consists of two parts, namely inner and outer 

loops. In the inner loop, operand A[i] holds a value and 

computes the partial product with all multiple values of the 

multiplicand B[j] (j = 0, n - 1). While in the outer loop, the 

index of operand A[i] increases by a word size, and then, the 

inner loop is executed. Fig. 1(b) shows the product scanning, 

which computes all partial products in the same column by 

multiplication and addition [1]. Since each partial product in 

the column is computed and then accumulated, registers are 

not needed for intermediate results. The results are stored 

once, and the stored results are not reloaded because all 

computations have already been completed. Fig. 1(c) shows 

the hybrid scanning method, which combines the useful 

features of operand scanning and product scanning [2]. 

Multiplication is performed on a block scale by using 

product scanning. The number of rows within the block is 

defined as d, and the inner block partial products follow the 

operand scanning rule. Therefore, this method reduces the 

number of load instructions by sharing the operands within 

the block. Fig. 1(d) shows the operand caching method, 

which follows the product scanning method, but it divides 

the calculation into several row sections [3]. By reordering 

the sequence of inner and outer row sections, we reused the 

previously loaded operands in the working registers for the 

next partial products. A few store instructions are added, but 

the number of required load instructions is reduced. The 

number of row sections is given by r = ⌊n/e⌋, and e denotes 

the number of words used for caching digits in the operand. 

Fig. 1(e) shows the consecutive operand caching method, 
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which is based on the characteristics of operand caching. 

The previous method has to reload operands whenever a 

row is changed, which generates an unnecessary overhead. 

To avoid these shortcomings, this method provides a contact 

point among rows that share the common operands for 

partial products. As a result, one side of the operands is 

continuously maintained in the registers and used [4]. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 1. (a) Operand scanning multiplication, (b) product scanning 

multiplication, (c) hybrid scanning multiplication, (d) operand caching 
multiplication, and (e) consecutive operand caching multiplication. 

III. MULTI-PRECISION SQUARING 
 

The squaring method can be implemented using the 

existing multiplication techniques because squaring requires 

almost the same operations as those required for 

multiplication, such as memory access and arithmetic 

operations. However, there are two main differences 

between multiplication and squaring; these are illustrated in 

Fig. 2. First, only one operand (A) is used for the squaring 

computation; therefore, the operand load is reduced to half 

of that in the case of multiplication and many registers that 

were previously used for operand holding are assigned the 

idle status and can be used for caching intermediate results 

or other values. Second, some duplicate partial products 

exist. In Fig. 2, the squaring structure consists of three parts, 

namely a red dotted middle part and light and dark gray 

triangle parts. The red part denotes the multiplication of the 

same operand, which is computed once. The other parts, 

namely the light and dark gray parts, generate the same 

partial product results. Therefore, these parts are multiplied 

once and added twice to the intermediate results. This 

computation generates the correct results, as expected. After 

removing the duplicate partial product results, we can 

describe the squaring structure as a triangular form, as 

shown in Fig. 2. Fig. 3(a) describes Yang et al.’s method [5]. 

This squaring method is intended for a hardware machine 

and not for a software implementation. Therefore, the 

software implementation has several disadvantages, such as 

an insufficient number of general-purpose registers to store 

all operands, carry-catcher values, and intermediate results 

obtained during partial product computations using operand 

scanning. Furthermore, reloading and restoring the inter-

mediate results for doubling require many memory access 

operations. Thus, the straight-forward implementation of the 

squaring method used for hardware is not recommended for 

software. Prime field multiplication consists of a number of 

partial products. When we compute partial products in an 

ascending order, intermediate results generate carry values, 

accumulating the partial product results. Traditionally, carry 

values spread to the end of the intermediate results, as 

shown in Fig. 4(a). This case continuously updates the result 

register (r6_r0), and therefore, the addition arithmetic is 

used many times. To reduce the overhead, the carry-catcher 

method for storing carry values to additional registers 

(c6_c0), was presented in [6] and is illustrated in Fig. 4(b).  

The carry-catching registers are immediately updated at 

the end of a computation. The carry-catcher-based squaring, 

illustrated in Fig. 3(b), was introduced in [6]. This method 

follows hybrid scanning and doubles the partial product 

results before they are added to the results. This method is 

inefficient because all products need to be doubled. The lazy 

doubling method, shown in Fig. 3(c), is an efficient 

doubling method and is described in detail in [7].  
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(a) 

 

(b) 

Fig. 2. (a) Multi-precision squaring structure, before removing duplicate 

partial product results, and (b) multi-precision squaring structure, after 
removing duplicate partial product results. 

 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. (a) Yang et al. [5] squaring, (b) carry-catcher squaring, (c) lazy 

doubling squaring, and (d) sliding block doubling squaring. 

 

 

This method also follows a hybrid scanning structure; 

therefore, the constant size of the operands and the inner 

structure is computed and the carry-catcher method is used 

for removing the consecutive carry updates. An important 

advantage of this method is the doubling process, which is 

delayed to the end of the inner structure and then computed.  

 

(a)                             (b) 

Fig. 4. Carry computation techniques. (a) Carry-propagation and (b) 

carry-catcher. 

 

 

This method reduces the number of arithmetic operations 

by conducting doubling computations on the accumulated 

intermediate results. This technique significantly reduces the 

number of doubling processes to 1. In [8], the sliding block 

doubling method is proposed. This method delays the 

doubling process to the very end of the implementation and 

the remaining partial products are executed with the 

doubling process. Since the doubling operation is conducted 

with the accumulated results, the number of arithmetic 

operations is efficiently reduced. 

 

 
IV. MONTGOMERY MULTIPLICATION 

 

The Montgomery algorithms were first proposed in 1985 

[9]. Montgomery algorithms avoid division in modular 

multiplication and reduction by introducing simple shift 

operations. Given two integers A and B and the modulus M, 

to compute the product P = A ∙ B  mod M, in the 

Montgomery method, the original operands A and B are 

converted into the Montgomery domain, A′ = A ∙ R mod M 

and B′ = B ∙ R  mod M. For efficient computation, the 

Montgomery residue R is selected as a power of 2 and the 

constant M′ = −𝑀−1 mod 2𝑛  is pre-computed. To 

compute the product, the following three steps are 

performed: P = A ∙ B , Q = P ∙ M′  mod 2𝑛 , Z = (P + 

QM)/2𝑛 . There are many variants of the Montgomery 

method. In Fig. 5, we illustrate the basic structure of 

Montgomery multiplication. In order to appropriately 

describe Montgomery multiplication, we introduce the 

double rhombus form. 

The upper rhombus represents Montgomery multi-

plication and the under rhombus, Montgomery reduction. To 

distinguish both computations, we have denoted the product 

process in dark gray and the reduction process in white. 

Montgomery multiplication has two main modes. The first 

mode is the separated version shown in Fig. 5(a) and (b). 

This method separates the multiplication and the reduction 

processes. The second mode is the interleaving version 

shown in Fig. 5(c)–(f). This model combined multiplication 

and reduction. If multiplication and reduction are partly 

integrated, we call the mode the coarsely integrated mode, 

and if the operations are fully integrated, we call the mode 
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the finely integrated mode. The first separated operand 

scanning (SOS) method computes the products and the 

reduction result separately. 

The multiplication structure is simple, but the perfor-

mance is highly degraded because the operand scanning 

method frequently accesses the memory to load or store the 

intermediate results and operands. The separated product 

scanning method performs the product scanning method for 

multiplication and reduction processes separately. As 

compared to that in SOS, in this method, the required 

number of registers is small; therefore, this method is a 

better choice when it comes to register-constrained devices. 

The coarsely integrated operand scanning (CIOS) method 

improves the previous SOS method by integrating the 

multiplication and reduction steps. Instead of computing all 

the full multiplication processes separately, the multiplication 

and reduction steps are alternated in every loop. With this 

technique, we can update the intermediate results more 

efficiently. In the case of CIOS, two inner loops are 

computed, but the finely integrated operand scanning (FIOS) 

method integrates the two inner loops of multiplication and 

reduction and computes one inner loop. This method 

reduces intermediate result load and store operations by 

computing all results at the intermediate stages. The finely 

integrated product scanning (FIPS) method is used for 

performing product scanning multiplication and reduction in 

the integrated model. This method does not reload the 

intermediate results; therefore, it is more efficient than the 

FIOS method. The coarsely integrated hybrid scanning 

method adopts hybrid multiplication. 

The first half of the multiplication is conducted with 

product scanning; then, multiplication and reduction are 

coarsely integrated in the operand scanning methods. 

Recently, [10] discussed the performance of different 

Montgomery multiplications on an 8-bit AVR microcontroller 

and analyzed the exact computation complexity at the 

instruction level. The authors of [10] discussed different 

hybrid Montgomery multiplication algorithms, including 

hybrid finely integrated product scanning (HFIPS), and 

introduced a novel approach for Montgomery multiplication, 

which we call hybrid separated product scanning (HSPS). 

This method finely reschedules the inner structure to reduce 

the number of data transfer instructions. 

 

 

V. OPTIMAL PRIME FIELD MONTGOMERY 
MULTIPLICATION 

 

A special family of prime fields, called optimal prime 

field (OPF), was proposed in [11]. The n-bit OPF primes 

have the following form: M = u ∙ 2k + 𝑣. Let u and v be 

relatively small coefficients as compared to 2k; u is either 8-

bit or 16-bit long, and v is several bits long.  

  

(a)                             (b) 

 

(c)                              (d) 

   

(e)                              (f) 

Fig. 5. Montgomery multiplication: (a) Separated operand scanning, (b) 

separated product scanning, (c) coarsely integrated operand scanning, (d) 
finely integrated operand scanning, (e) finely integrated product scanning, 
and (f) coarsely integrated hybrid scanning. 

 

Character k denotes n - m ∙ w, where m denotes a small 

integer, and m ∙ w represents the size of u. The OPF in [11] 

set u as a 16-bit-long integer and v as 1; this is formalized as 

M = u ∙ 2𝑛−16 + 1. Most of the OPF prime bits are 0 except 

a few bits in the most and least significant words. Due to the 

low hamming weight of OPF, Montgomery multiplication is 

considerably simpler than its ordinary counterparts. To 

describe the OPF model, we introduced two colored dots in 

Fig. 6. The first yellow dot describes the addition of Q to the 

intermediate results because parameter M has one in the 

least significant bit, which is computable with a simple 

addition operation instead of partial products. In the case of 

the white dot, 16-bit partial products Q ∙ M are added to the 

intermediate results. The various curves including 

Weierstraß, twisted Edwards curve, and GLV using OPF are 

reported in [12, 13]. 

 

160 bit: 52542 × 2144 + 1 

 0XCD3E000000000000000000000000000000000001 

192 bit: 55218 ×  2176 + 1 

0XD7B200000000000000000000000000000000000000000

001 
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(a)                               (b) 

   

(c)                                (d) 

 

(e) 

Fig. 6. Montgomery multiplication: (a) Separated operand scanning, (b) 

separated product scanning, (c) coarsely integrated operand scanning, (d) 
finely integrated operand scanning, (e) finely integrated product scanning, 
and (f) coarsely integrated hybrid scanning. 

 

 

224 bit: 50643 × 2208 + 1 

0XC5D300000000000000000000000000000000000000000

00000000001 

256 bit: 37266 ×  2240 + 1 

0X9192000000000000000000000000000000000000000000

000000000000000001 

 

OPF-based Montgomery multiplication can exploit an 

ordinary Montgomery method without difficulty. Among the 

straightforward adoptions of the previous methods, OPF-

FIPS finely combines multiplication and reduction and 

reports the highest performance because the results are 

located in the same column, which removes the duplicate 

intermediate load or store operations. 

 

 

VI. EVALUATION 
 

A. Evaluation on 8-bit Platform AVR 
 

In this section, we will describe the performance 

evaluation using an 8-bit AVR processor. The embedded 

processor is equipped with an ATmega128 8-bit processor 

clocked at 7.3728 MHz. It has a 128-kB EEPROM chip and 

a 4-kB RAM chip [14]. The ATmega128 processor has the 

RISC architecture with 32 registers. Among them, 6 

registers (r26–r31) serve as special pointers for indirect 

addressing. The remaining 26 registers are available for 

arithmetic operations. One arithmetic instruction incurs one 

clock cycle, and memory instructions or 8-bit multiplication 

operations incur two processing cycles.  

The comparison results of multiplication are presented in 

Table 1. In the case of the operand scanning (OS) method, 

intermediate results are retained in registers; therefore, 

operands are not cached in the registers and reloaded several 

times from the memory to the register. As described earlier, 

memory operations are the most expensive operations in 

RISC processors and degrade performance significantly. 

The alternative product scanning (PS) method reduces the 

number of store instructions required by using column-wise 

multiplication. This architecture avoids a high overhead to 

retain intermediate results on general-purpose registers. The 

remaining registers are efficiently used for caching operands. 

Thereafter, a hybrid scanning method that combines the 

efficient architectures of the previous OS and PS 

methods was proposed in [2]. This method adjusts the 

column and row widths to fit into a number of general-

purpose registers in the embedded processors. There are 

several hybrid scanning (HS) variants proposed in other 

papers, and small improvements were achieved in each of 

these papers. In CHES 2011, an operand caching method 

that caches operands in a row and significantly reduces the 

computational cost is proposed [3]. In Workshop on 

Information Security Applications 2012, an advanced 

operand caching (OC) method, called consecutive operand 

caching (COC), was presented; this method caches operands 

from the first row to the last row [4]. In the case of squaring, 

this distinct structure can be exploited to improve the 

performance significantly. Firstly, the operand scanning 

method is directly applied to the squaring method. This is 

faster than OS multiplication but slower than an advanced 

multi-plication method because of the requirement to store a 

large number of intermediate results. In [6, 7], duplicate 

parts are efficiently doubled with simple shift or addition. 

Further improvements are achieved in [19]. This method 

fully accumulates all the intermediate results and then 

doubles the parts with a simple shift operation; thus, the 

number of multiplication and arithmetic operations is 

decreased. 

In terms of Montgomery multiplication, there are three 

representative results. First, TinyECC is the most referenced 

work and provides several ECC primitives over TinyOS 

[15]. The researchers of [15] adopted fast reduction for a 

modular operation. This technique is more efficient than any 

other method because programmers can hardcode the 

reduction process by following the target curves; however, 



Study of Modular Multiplication Methods for Embedded Processors 

http://jicce.org 151 

this is not scalable architecture. In [16], a Karatsuba-based 

Montgomery method is introduced. This method exploits 

the features of the Karatsuba algorithm to reduce the 

number of required clock cycles. Recently, in [10], novel 

HSPS and HFIPS methods were presented. These methods 

redesign the inner loops to reduce the number of mov 

instructions and show the fastest performance ever achieved. 

The detailed clock cycle is presented in Table 2.  

Alternative OPF-Montgomery multiplication has a low 

hamming weight than ordinary Montgomery multiplication. 

These methods exploit the FIPS method for the OPF-

Montgomery method. The direct implementation shows 

significant performance enhancements, and the squaring 

method shows a higher performance than the multiplication 

method. The detailed clock cycle is presented in Table 3. 

 

 

Table 1. Comparison of multiplication results in case of 160-bit unrolled 

version 

Inst add mul ld st mov 
Other Total 

CPI 1 2 2 2 1 

Multiplication 

OS 1600 400 820 440 42 466 5428 

PS 1200 400 800 40 81 44 3805 

[2] 1360 400 167 40 355 197 3106 

[21] 986 400 238 40 355 184 2881 

[6] 1263 400 200 40 70 38 2651 

[23] 1194 400 200 40 212 179 2865 

[22] 1092 400 200 40 202 271 2845 

[10] 1092 400 200 40 202 244 2818 

[3] 1240 400 80 60 2 68 2395 

[4] 1240 400 70 60 n/a 56 2356 

Squaring 

[5] 909 210 468 280 n/a 284 3009 

[6] 1265 210 100 40 n/a 100 2065 

[7] 804 210 51 40 n/a 103 1509 

[8] 671 210 58 81 n/a 87 1456 

 

Table 2. Different length Montgomery multiplication execution time 

(clock cycles) 

Library 160 192 224 256 

TinyECC [15] 14929 20060 25765 n/a 

MIRACL (KCM) [16] 7753 10653 14033 17761 

HSPS [10] 6648 9171 12110 15465 

HFIPS [10] 6080 8539 11420 14723 

 

Table 3. Execution time (in cycles) of OPF-Montgomery multiplication 

and squaring in 160-bit on AVR 

Library Multiplication Squaring 

GroBschadl et al. [13] 5239 4086 

Chu et al. [12] 3588 3032 

 

Table 4. Comparison of Comba multiplication, variants of hybrid 

multiplication, and operand caching multiplication 

Inst CPI 
 [19] [18]  [20] 

Inst Cycle Inst Cycle Inst Cycle 

add @reg, 

reg 
2 99 198     

addc &label, 

reg 
3     135 405 

Other    309 709 51 51 

mov @reg+, 

reg 
2     12 24 

mov X(reg), 

&label 
6 20 120 45 270 1 6 

mov reg, 

X(reg) 
4   20 80 19 76 

mov reg, reg 1   27 27   

mov reg, 

&label 
4 89 356 100 400 101 404 

mov X(reg), 

reg 
3 13 39 45 135 3 9 

mov @reg+, 

&label 
5 100 500   54 270 

mov @reg, 

&label 
5 29 145   50 250 

mov @reg, 

X(reg) 
5 20 100     

Others   128  167   

Total   1586  1746  1495 

 

 
B. Evaluation on 16-bit Platform MSP430X 

 

MSP430 is a representative 16-bit processor board with a 

clock frequency of 8 MHz [17], 32- to 48-kB ash memory, 

10-kB RAM, and 12 general-purpose registers from r4 to 

r15 available. Among them, 2 registers serve as special 

pointers for indirect addressing, 4 registers for intermediate 

results, and the remaining 6 registers for operand caching. 

Unlike the AVR series, MSP430 provides an embedded 16-

bit hardware multiplier that computes 16-bit real-number 

multiplication and multiplication and accumulation (MAC). 

In the MAC mode, values are multiplied and accumulated 

into the same location in the internal memory, yielding the 

final result at the same location. The latest target board, the 

MSP430X, operates at a higher clock frequency of 16–20 

MHz and provides 32-bit multiplication. To perform 

multiplication, the multiplication mode is selected by 

allocating operands to memory maps among MPY32L, 

MPYS32L, MAC32L, and MACS32L. These denote 

multiplication modes including signed multiplication, MAC, 

and signed MAC. The MAC mode preserves intermediate 

results in the inner memory from RES0 to RES3. Only the 

SUMEXT value, a 65-bit result, is not maintained; therefore, 

it needs to be stored into a register every session. The 

multiplication and squaring results are presented in Table 4.  
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Table 5. Comparison of Comba multiplication, variants of hybrid 

multiplication, and operand caching multiplication 

Algo 
160-bit 256-bit 

[17] X[17] 32[17] 32[24] [17] X[17] 32[17] 

Mul 1565 1299 741 615 3563 2981 1620 

Sqr 1350 1056 630 n/a 2946 2435 1369 

Mont 1659 n/a n/a n/a 3600 n/a n/a 

Mont,s 1413 1174 853 n/a 2670 2232 1695 

 

 

First, the hybrid method is applied to upgrade performance 

[18]. This shows a high performance, but the latter method 

proposed in [19] is finely upgraded by exploiting the MAC 

method. This function finely accumulates all the 

intermediate results and updates the results immediately. 

Further improvements are described in [20]. The authors 

of [20] use fine register assignments to reduce the number 

of memory access operations. In the case of Montgomery 

multiplication, there is only one result available and the 

algorithm exploits the MAC-based product scanning 

methods. The results are presented in Table 5. In [17], the 

authors presented PS-based Montgomery multiplication. Its 

performance is better in a sparse form because this case 

reduces the number of arithmetic operations. Furthermore, 

the squaring method is faster than the multiplication method 

because of the duplicate partial products discussed in the 

previous section. 
 

 

VII. DISCUSSION 
 

In this paper, we reviewed several Montgomery multi-

plication methods on embedded processors. Each embedded 

processor has a specific architecture; therefore, the multi-

plication method should be carefully selected to achieve a 

high performance. In Table 4, we present the current state-

of-the-art methods and candidate fields, which imply that 

there is room to improve performance by adopting advanced 

multiplication/squaring methods. In the case of ATmega, the 

most advanced multiplication and squaring methods are 

COC(Consecutive Operand Caching) and SBD(Sliding 

Block Doubling), respectively. However, for Montgomery 

multiplication, the PS method is still actively exploited. 

Therefore, we can expect performance enhancement by 

applying these advanced multiplication and squaring methods 

to Montgomery methods. In the case of MSP, because of the 

use of an advanced MAC method, the PS method is the best 

choice; therefore, all the implementations are conducted 

with the PS method. However, there are newly released 

methods including COC and SBD available. Furthermore, 

OPF-Montgomery multiplication and squaring have not yet 

been studied carefully. Therefore, we can apply PS, COC, or 

SBD to improve the performance. 

VIII. CONCLUSION 
 

Public key cryptography is widely used for key dis-

tribution and digital signature. However, high computational 

complexity is not practical for resource-constrained devices 

such as embedded processors. To accelerate performance in 

terms of speed, most expensive operations, such as finite 

field multiplication and squaring, should be considered. In 

this study, we explored various Montgomery algorithms on 

embedded microprocessors and analyzed each method in 

detail. In the evaluation part, we suggested several research 

topics that have not yet been studied carefully. This paper 

includes a discussion of a wide range of Montgomery 

multiplication methods for embedded microprocessors and 

would be a good reference paper for future researchers. 
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