• Title/Summary/Keyword: Pseudoalteromonas

Search Result 65, Processing Time 0.033 seconds

Isolation of marine algicidal bacteria from surface seawater and sediment samples associated with harmful algal blooms in Korea (유해조류번성 주변의 해수와 침전물에서 살조균의 분리)

  • Kristyanto, Sylvia;Kim, Jaisoo
    • Korean Journal of Microbiology
    • /
    • v.52 no.1
    • /
    • pp.40-48
    • /
    • 2016
  • This study mainly focused on isolation of marine algicidal bacteria associated with phytoplankton blooms and characterization of algicidal activity against harmful algae. Harmful algal blooms (HABs) found naturally in surface waters have caused many environmental problems worldwide. In this study, forty bacterial strains that have capability of inhibiting harmful algal growth were isolated from Masan Bay, Jinhae Bay, Dol Island, Jangmok Bay, and the Tongyeong Sea, Republic of Korea. The bacteria were screened furthermore for the characteristics on algicidal activities against Cochlodinium polykrikoides, Chattonella marina, Skeletonema costatum, Heterosigma akashiwo, Heterocapsa triquetra, Prorocentrum minimum, and Scrippsiella trochoidea. As a result, the algicidal bacteria that were screened from double over layer agar and microscopic counts tests belonged to genera Pseudomonas, Vibrio, Bacillus, Pseudoalteromonas, Ruegeria, Joostella, Marinomonas, Stakelama, Porphyrobacter, and Albirhodobacter. One of the most important HAB species is Co. polykrikoides and the strongest algicidal activity against the dinoflagellate was 94.00% after 6 h treatment with 10% bacterial culture filtrate. In this study, Marinomonas sp. M Jin 1-8, Stakelama sp. ZB Yeonmyeong 1-11 & 1-13, Porphyrobacter sp. M Yeonmyeong 2-22, and Albirhodobacter sp. 6-R Jin 6-1 were found to be as new genera of bacteria having anti-algal activity. These results suggest that these bacteria might play an important role in controlling phytoplankton blooms.

Culture and Identification of Bacteria from Marine Biofilms

  • Lee, Yoo-Kyung;Kwon, Kae-Kyung;Cho, Kyeung-Hee;Kim, Hyo-Won;Park, Jae-Hyun;Lee, Hong-Kum
    • Journal of Microbiology
    • /
    • v.41 no.3
    • /
    • pp.183-188
    • /
    • 2003
  • We isolated and cultured bacteria that inhabited marine biofilms, and identified them by phylogenetic analysis using 16S rDNA sequences. In the marine environment, biofilms cover most subtidal and intertidal solid surfaces such as rocks, ships, loops, marine animals, and algae. The bacteria in most biofilms are embedded in extracellular polymeric substances that comprise mainly of exopolysaccharides. The exopolysaccharides are excreted from multiple bacterial species; therefore, biofilms are a good source for screening exopolysaccharide-producing bacteria. Thirty-one strains were cultured, and a total of 17 unique strains were identified. Phylogenetic analysis using 16S rDNA sequences indicated that the 17 strains belonged to ${\alpha}$-Proteobacteria (Ochrobactrum anthropi, Paracoccus carotinifaciens); ${\gamma}$-Proteobacteria (Pseudoalteromonas agarovorans, P. piscicida, Pseudomonas aeruginosa, Shewanella baltica, Vibrio parahaemolyticus, V. pomeroyi); CFB group bacteria (Cytophaga latercula, Tenacibaculum mesophilum); high GC, Gram-positive bacteria (Arthrobacter nicotianae, Brevibacterium casei, B. epidermidis, Tsukamurella inchonensis); and low GC, Gram-positive bacteria (Bacillus macroides, Staphylococcus haemolyticus, S. warneri).

Effect of Molecular Chaperones on the Soluble Expression of Alginate Lyase in E. coli

  • Shin, Eun-Jung;Park, So-Lim;Jeon, Sung-Jong;Lee, Jin-Woo;Kim, Young-Tae;Kim, Yeon-Hee;Nam, Soo-Wan
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.414-419
    • /
    • 2006
  • When the alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was organized as aggregated insoluble particles known as inclusion bodies. To examine the effects of chaperones on soluble and nonaggregated form of alginate lyase in E. coli, we constructed plasm ids designed to permit the coexpression of aly and the DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results indicate that coexpression of aly with the DnaK/DnaJ/GrpE chaperone together had a marked effect on the yield alginate lyase as a soluble and active form of the enzyme. It is speculated this result occurs through facilitation of the correct folding of the protein. The optimal concentration of L-arabinose required for the induction of the DnaK/DnaJ/GrpE chaperone was found to be 0.05mg/mL. An analysis of the protein bands on SDS-PAGE gel indicated that at least 37% of total alginate lyase was produced in the soluble fraction when the DnaK/DnaJ/GrpE chaperone was coexpressed.

Overexpression of Arylsulfatase in E. coli and Its Application to Desulfatation of Agar

  • Lim, Jae-Myung;Jang, Yeon-Hwa;Kim, Hyeung-Rak;Kim, Young-Tae;Choi, Tae-Jin;Kim, Joong-Kyun;Nam, Soo-Wan
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.777-782
    • /
    • 2004
  • The arylsulfatase gene (astA, 984 bp ORF) from the P. carrageenovora genome was amplified by PCR and subcloned into the pET21a vector. When the constructed plasmid pAST-A1 (6.4 kb) was introduced into E. coli BL21(DE3), the transformant on the LB plate containing IPTG showed a hydrolyzing activity for 4-methylumbelliferyl sulfate and p-nitrophenyl sulfate. The highest arylsulfatase activity (2.1 unit/ml) was obtained at 10 mM IPTG. Most arylsulfatase activity was found in the cell lysate, whereas no significant activity was detected in the culture supernatant. The molecular weight of the recombinant enzyme was estimated to be 33.1 kDa by SDS-PAGE. After the reaction of agar with arylsulfatase for 12 h at $40^{\circ}C$, the gel strength of the agar increased by 2-fold, and 73% of the sulfate in the agar had been removed. This result suggests that arylsulfatase expressed in E. coli could be useful in the production of electrophoretic grade agarose.

Description of ten unrecorded bacterial species isolated from Ostrea denselamellosa and Eriocheir japonica from the Seomjin River

  • Choi, Ahyoung;Han, Ji-Hey;Kim, Eui-Jin;Cho, Ja Young;Hwang, Sun-I
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.4
    • /
    • pp.592-599
    • /
    • 2019
  • Ostrea denselamellosa and Eriocheir japonica samples were collected from the Seomjin River in 2019 as part of the "Research of Host-Associated Bacteria" research program. Almost 200 bacterial strains were isolated from the O. denselamellosa and E. japonica samples and subsequently identified by 16S rRNA gene sequencing. Among the bacterial isolates, ten strains possessed greater than 98.7% sequence similarity with published bacterial species that had not previously been recorded in Korea. These species were phylogenetically diverse, belonging to three phyla, four classes, seven orders, and eight genera. At the genus and class level, the previously unrecorded species belonged to Pseudoalteromonas, Aliivibrio, Rheinheimera, Leucothrix, and Shewanella of the class Gamma-proteobacteria, Olleya of the class Flavobacteriia, Algoriphagus of the class Cytophagia, and Lactococcus of the class Bacilli. The previously unrecorded species were further characterized by examining their Gram staining, colony and cell morphology, biochemical properties, and phylogenetic positions.

A Study on Bioremediation of Fish Farm Sediment Using CaO2 by Enhancement of Indigenous Microbial Activity (어류양식장 저질개선을 위한 과산화칼슘 투입에 의한 생태 환경변화 관찰)

  • Cho, Daechul;Bae, Hwan-Jin;Kwon, Sung-Hyun
    • Journal of Environmental Science International
    • /
    • v.21 no.10
    • /
    • pp.1187-1193
    • /
    • 2012
  • The aim of this research is to enhance the bottom environment of Geoje fish farm that has been severely contaminated. Treatment of microbial agent and/or calcium oxide significantly changed that environment: in ignition loss, either treatment (25% or 21%) showed better than mixed treatment (13.2%). In COD, the oxygen releasing agent or mixed treatment reduced the index by more than 20%. In T-P and T-N, the effects of $CaO_2$ on them were overwhelming (50% or more) meanwhile that of the microbial agent on them was less than 20%. Also, $CaO_2$ influenced on the microbial flora: Desulfobvibrio thermophilus, a sulfate reducing bacterium decreased in number, considering the increase of pH and rise of redox potential. In contrast, Pseudomonas sp., Pseudoalteromonas sp., Pseudomonas aeruginosa were remarkably dominant over other species with mixed treatment as a PCA analysis confirmed it.

Cloning, Expression, and Characterization of a Glycoside Hydrolase Family 118 ${\beta}$-Agarase from Agarivorans sp. JA-1

  • Lee, Dong-Geun;Jeon, Myong Je;Lee, Sang-Hyeon
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1692-1697
    • /
    • 2012
  • We report a glycoside hydrolase (GH)-118 ${\beta}$-agarase from a strain of Agarivorans, in which we previously reported recombinant expression and characterization of the GH-50 ${\beta}$-agarase. The GH comprised an open reading frame of 1,437 base pairs, which encoded a protein of 52,580 daltons consisting of 478 amino acid residues. Assessment of the entire sequence showed that the enzyme had 97% nucleotide and 99% amino acid sequence similarities to those of GH-118 ${\beta}$-agarase from Pseudoalteromonas sp. CY24, which belongs to a different order within the same class. The gene corresponding to a mature protein of 440 amino acids was inserted, recombinantly expressed in Escherichia coli, and purified to homogeneity with affinity chromatography. It had maximal activity at $35^{\circ}C$ and pH 7.0 and had 208.1 units/mg in the presence of 300 mM NaCl and 1 mM $CaCl_2$. More than 80% activity was maintained after 2 h exposure to $35^{\circ}C$; however, < 40% activity remained at $45^{\circ}C$. The enzyme hydrolyzed agarose to yield neoagarooctaose as the main product. This enzyme could be useful for industrial production of functional neoagarooligosaccharides.

A report of 30 unrecorded bacterial species in Korea, isolated from marine ecosystems in 2021

  • Shin, Seung Yeol;Joung, Yochan;Han, Dukki;Jeong, Ji Hye;Jeon, Yi Hyun;Song, Jaeho
    • Journal of Species Research
    • /
    • v.11 no.3
    • /
    • pp.143-154
    • /
    • 2022
  • To obtain unrecorded bacterial species in Korea, various marine samples were collected from Jeollanam-do Province, Korea in 2021. After plating the samples on marine agar and marine R2A agar, and incubating aerobically and anaerobically, approximately 1200 bacterial strains were isolated and identified using 16S rRNA gene sequences. A total of 30 strains showed ≥98.7% 16S rRNA gene sequence similarity with validly published bacterial species but not reported in Korea, indicating that they are unrecorded bacterial species in Korea. The unrecorded bacterial strains belonged to 4 phyla, 7 classes, 13 orders, 19 families, and 22 genera, which were assigned to Azospirllium, Loktanella, and Pseudovibrio of the class Alphaproteobacteria; Grimontia, Halomonas, Marinobacter, Microbulbifer, Photobacterium, Pseudoalteromonas, Pseudidiomarina, Ferrimonas, Shewanella, Simiduia, Thalassotalea, and Vibrio of the class Gammaproteobacteria; Priestia and Enterococcus of the class Bacilli; Persicobacter of the class Cytophagia; Aureivirga of the class Flavobacteriia; Propionigenium and Psychrilyobacter of the class Fusobacteriia; and Tepidibacter of the class Clostridia. The details of the unreported species including Gram reaction, colony and cell morphology, biochemical characteristics, and phylogenetic position are also provided in the description of the strains.

Survey of Antibiotic Resistant Bacteria in Lake Gyeongpo, Korea (경포호의 항생제 내성 세균 조사)

  • Dukki Han
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.169-176
    • /
    • 2023
  • The emergence and spread of antibiotic-resistant bacteria have been increasing with anthropogenic contamination. Understanding the prevalence and distribution of these resistant bacteria in environments is crucial for effectively managing anthropogenic pollutants. Lake Gyeongpo in the Gangwon Province of South Korea is known for its diverse ecological features and human interactions. The lake is exposed to pollutants from nonpoint sources, including urban areas, agricultural practices, and recreational activities, which can introduce antibiotics and foster antibiotic resistance in bacteria. The present study investigates Lake Gyeongpo as a potential reservoir for antibiotic-resistant bacteria in a natural ecosystem. A total of 203 bacterial isolates were collected from six sampling locations in Lake Gyeongpo during May, July, and November 2022. Most isolates were taxonomically identified as Pseudoalteromonas, Bacillus, Shewanella, and Vibrio spp.; their abundance showed a spatiotemporal distribution. An antibiotic susceptibility test was conducted on 75 isolates using the disk diffusion method with six drugs according to the CLSI guideline; 42 isolates were resistant to one or more antibiotics. Among these, 15 isolates were identified as multidrug resistant bacteria. This finding suggests the potential anthropogenic impact on Lake Gyeongpo and provides valuable insights into the dissemination of antibiotic resistance caused by anthropogenic pollutants.

A Rapid and Efficient Screening Method for Antibacterial Compound-Producing Bacteria

  • Hettiarachchi, Sachithra Amarin;Lee, Su-Jin;Lee, Youngdeuk;Kwon, Young-Kyung;Zoysa, Mahanama De;Moon, Song;Jo, Eunyoung;Kim, Taeho;Kang, Do-Hyung;Heo, Soo-Jin;Oh, Chulhong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1441-1448
    • /
    • 2017
  • Antibacterial compounds are widely used in the treatment of human and animal diseases. The overuse of antibiotics has led to a rapid rise in the prevalence of drug-resistant bacteria, making the development of new antibacterial compounds essential. This study focused on developing a fast and easy method for identifying marine bacteria that produce antibiotic compounds. Eight randomly selected marine target bacterial species (Agrococcus terreus, Bacillus algicola, Mesoflavibacter zeaxanthinifaciens, Pseudoalteromonas flavipulchra, P. peptidolytica, P. piscicida, P. rubra, and Zunongwangia atlantica) were tested for production of antibacterial compounds against four strains of test bacteria (B. cereus, B. subtilis, Halomonas smyrnensis, and Vibrio alginolyticus). Colony picking was used as the primary screening method. Clear zones were observed around colonies of P. flavipulchra, P. peptidolytica, P. piscicida, and P. rubra tested against B. cereus, B. subtilis, and H. smyrnensis. The efficiency of colony scraping and broth culture methods for antimicrobial compound extraction was also compared using a disk diffusion assay. P. peptidolytica, P. piscicida, and P. rubra showed antagonistic activity against H. smyrnensis, B. cereus, and B. subtilis, respectively, only in the colony scraping method. Our results show that colony picking and colony scraping are effective, quick, and easy methods of screening for antibacterial compound-producing bacteria.