Browse > Article
http://dx.doi.org/10.4014/jmb.1703.03012

A Rapid and Efficient Screening Method for Antibacterial Compound-Producing Bacteria  

Hettiarachchi, Sachithra Amarin (Korea Institute of Ocean Science & Technology)
Lee, Su-Jin (Korea Institute of Ocean Science & Technology)
Lee, Youngdeuk (Korea Institute of Ocean Science & Technology)
Kwon, Young-Kyung (Korea Institute of Ocean Science & Technology)
Zoysa, Mahanama De (College of Veterinary Medicine, Chungnam National University)
Moon, Song (Korea Institute of Ocean Science & Technology)
Jo, Eunyoung (Korea Institute of Ocean Science & Technology)
Kim, Taeho (Korea Institute of Ocean Science & Technology)
Kang, Do-Hyung (Korea Institute of Ocean Science & Technology)
Heo, Soo-Jin (Korea Institute of Ocean Science & Technology)
Oh, Chulhong (Korea Institute of Ocean Science & Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.27, no.8, 2017 , pp. 1441-1448 More about this Journal
Abstract
Antibacterial compounds are widely used in the treatment of human and animal diseases. The overuse of antibiotics has led to a rapid rise in the prevalence of drug-resistant bacteria, making the development of new antibacterial compounds essential. This study focused on developing a fast and easy method for identifying marine bacteria that produce antibiotic compounds. Eight randomly selected marine target bacterial species (Agrococcus terreus, Bacillus algicola, Mesoflavibacter zeaxanthinifaciens, Pseudoalteromonas flavipulchra, P. peptidolytica, P. piscicida, P. rubra, and Zunongwangia atlantica) were tested for production of antibacterial compounds against four strains of test bacteria (B. cereus, B. subtilis, Halomonas smyrnensis, and Vibrio alginolyticus). Colony picking was used as the primary screening method. Clear zones were observed around colonies of P. flavipulchra, P. peptidolytica, P. piscicida, and P. rubra tested against B. cereus, B. subtilis, and H. smyrnensis. The efficiency of colony scraping and broth culture methods for antimicrobial compound extraction was also compared using a disk diffusion assay. P. peptidolytica, P. piscicida, and P. rubra showed antagonistic activity against H. smyrnensis, B. cereus, and B. subtilis, respectively, only in the colony scraping method. Our results show that colony picking and colony scraping are effective, quick, and easy methods of screening for antibacterial compound-producing bacteria.
Keywords
Colony picking; colony scraping; broth culture; screening; antibacterial compounds;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Roberts M, Nakamura L, Cohan F. 1996. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int. J. Syst. Evol. Microbiol. 46: 470-475.
2 Poli A, Nicolaus B, Denizci A, Yavuzturk B, Kazan D. 2012. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 63: 10-18.
3 Kaneko M, Iwashita M. 1987. Antimicrobial susceptibility of Vibrio parahaemolyticus and Vibrio alginolyticus isolated from human feces and foods. Kansenshogaku Zasshi 61: 9-16.   DOI
4 Bottone E. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398.   DOI
5 Ushakova N, Nekrasov R, Meleshko N, Laptev G, Il'ina L, Kozlova A, et al. 2013. Effect of Bacillus subtilis on the rumen microbial community and its components exhibiting high correlation coefficients with the host nutrition, growth, and development. Microbiology 82: 475-481.   DOI
6 Stevens D, Hamilton J, Johnson N, Kim K, Lee J. 2009. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center. Medicine 88: 244-249.   DOI
7 Hubalek Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 46: 205-229.   DOI
8 Clinical and Laboratory Standards Institute (CLSI). 2015. Performance standard for antimicrobial susceptibility testing; twenty-second informational supplement, pp. 146-156. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
9 Shank EA, Kolter R. 2009. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12: 205-214.   DOI
10 Armstrong E, Yan L, Boyd K, Wright P, Burgess J. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37-40.   DOI
11 Gibb A. 1999. Plates are better than broth for recovery of fastidious organisms from some specimen material. J. Clin. Microbiol. 37: 875.
12 Sanchez J, Kouznetsov V. 2010. Antimycobacterial susceptibility testing methods for natural products research. Braz. J. Microbiol. 41: 270-277   DOI
13 Pauli G, Case R, Inui T, Wang Y, Cho S, Fischer N, et al. 2005. New perspectives on natural products in TB drug research. Life Sci. 78: 485-494.   DOI
14 Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79.   DOI
15 Dheilly A, Soum-Soutera E, Klein G, Bazire A, Compere C, Haras D, et al. 2010. Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl. Environ. Microbiol. 76: 3452-3461.   DOI
16 Wilson G, Raftos D, Nair S. 2011. Antimicrobial activity of surface attached marine bacteria in biofilms. Microbiol. Res. 166: 437-448.   DOI
17 Goers L, Freemont P, Polizzi K. 2014. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11: 20140065.   DOI
18 Yu M, Wang J, Tang K, Shi X, Wang S, Zhu W, Zhang X. 2011. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology 158: 835-842.
19 Fukuda T, Tsutsumi K, Morita H. 2008. Antibiotic activity in co-culture: influence of Bacillus subtilis on the antibiotic activity of Rhizopus peka. Japan J. Food Eng. 9: 99-106.
20 Dopazo C, Lemos M, Lodeiros C, Bolinches J, Barja J, Toranzo A. 1988. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol. 65: 97-101.   DOI
21 Gauthier G, Gauthier M, Christen R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (Emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45: 755-761.   DOI
22 Bowman J. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5: 220-241.   DOI
23 Jin G, Wang S, Yu M, Yan S, Zhang X. 2010. Identification of a marine antagonistic strain JG1 and establishment of a polymerase chain reaction detection technique based on the gyrB gene. Aquac. Res. 41: 1867-1874.   DOI
24 Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y. 2008. Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J. Appl. Microbiol. 105: 1672-1677.   DOI
25 Offret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y. 2016. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar. Drugs 14: 129.   DOI
26 Darabpour E, Roayaei AM, Motamedi H, Ronagh M. 2011. Isolation of a broad spectrum antibiotic producer bacterium, Pseudoalteromonas piscicida PG-02, from the Persian Gulf. Bangladesh J. Pharmacol. 6: 74-83.
27 Newman D J, C ragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75: 311-335.   DOI
28 Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, et al. 2011. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA 108: 12943-12948.   DOI
29 Austin B. 1989. Novel pharmaceutical compounds from marine bacteria. J. Appl. Bacteriol. 67: 461-470.   DOI
30 Jensen P, Fenical W. 1996. Marine bacterial diversity as a resource for novel microbial products. J. Ind. Microbiol. Biotechnol. 17: 346-351.   DOI
31 Vigneshwari R, Sally RA, Jayapradha R. 2015. Cocultivation-powerful tool for the production of secondary metabolites. J. Chem. Pharm. Res. 7: 481-485.
32 Valgas C, Souza S, Smânia E, Smania JA. 2007. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38: 369-380.   DOI
33 Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79.   DOI
34 Asker D, Beppu T, Ueda K. 2007. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst. Appl. Microbiol. 30: 291-296.   DOI
35 Pikkemaat M. 2009. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal. Bioanal. Chem. 395: 893-905.   DOI
36 Zhang J, Liu X, Liu S. 2009. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 60: 1897-1903.
37 Ivanova E, Alexeeva Y, Zhukova N, Gorshkova N, Buljan V, Nicolau D, et al. 2004. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst. Appl. Microbiol. 27: 301-307.   DOI
38 Romanenko L. 2003. Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol. 53: 125-131.   DOI
39 Shao R, Lai Q, Liu X, Sun F, Du Y, Li G, et al. 2013. Zunongwangia atlantica sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 64: 16-20.
40 Bernbom N, Ng Y, Olsen S, Gram L. 2013. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint. Appl. Environ. Microbiol. 79: 6885-6893.   DOI
41 Anwar M, Choi S. 2014. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar. Drugs 12: 2485-2514.   DOI
42 Jung M, Kim J, Paek W, Lim J, Lee H, Kim P, et al. 2011. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol. 49: 1027-1032.   DOI