DOI QR코드

DOI QR Code

A Rapid and Efficient Screening Method for Antibacterial Compound-Producing Bacteria

  • Received : 2017.03.08
  • Accepted : 2017.06.13
  • Published : 2017.08.28

Abstract

Antibacterial compounds are widely used in the treatment of human and animal diseases. The overuse of antibiotics has led to a rapid rise in the prevalence of drug-resistant bacteria, making the development of new antibacterial compounds essential. This study focused on developing a fast and easy method for identifying marine bacteria that produce antibiotic compounds. Eight randomly selected marine target bacterial species (Agrococcus terreus, Bacillus algicola, Mesoflavibacter zeaxanthinifaciens, Pseudoalteromonas flavipulchra, P. peptidolytica, P. piscicida, P. rubra, and Zunongwangia atlantica) were tested for production of antibacterial compounds against four strains of test bacteria (B. cereus, B. subtilis, Halomonas smyrnensis, and Vibrio alginolyticus). Colony picking was used as the primary screening method. Clear zones were observed around colonies of P. flavipulchra, P. peptidolytica, P. piscicida, and P. rubra tested against B. cereus, B. subtilis, and H. smyrnensis. The efficiency of colony scraping and broth culture methods for antimicrobial compound extraction was also compared using a disk diffusion assay. P. peptidolytica, P. piscicida, and P. rubra showed antagonistic activity against H. smyrnensis, B. cereus, and B. subtilis, respectively, only in the colony scraping method. Our results show that colony picking and colony scraping are effective, quick, and easy methods of screening for antibacterial compound-producing bacteria.

Keywords

References

  1. Newman D J, C ragg GM. 2012. Natural products as sources of new drugs over the 30 years from 1981 to 2010. J. Nat. Prod. 75: 311-335. https://doi.org/10.1021/np200906s
  2. Zhu F, Qin C, Tao L, Liu X, Shi Z, Ma X, et al. 2011. Clustered patterns of species origins of nature-derived drugs and clues for future bioprospecting. Proc. Natl. Acad. Sci. USA 108: 12943-12948. https://doi.org/10.1073/pnas.1107336108
  3. Austin B. 1989. Novel pharmaceutical compounds from marine bacteria. J. Appl. Bacteriol. 67: 461-470. https://doi.org/10.1111/j.1365-2672.1989.tb02517.x
  4. Darabpour E, Roayaei AM, Motamedi H, Ronagh M. 2011. Isolation of a broad spectrum antibiotic producer bacterium, Pseudoalteromonas piscicida PG-02, from the Persian Gulf. Bangladesh J. Pharmacol. 6: 74-83.
  5. Jensen P, Fenical W. 1996. Marine bacterial diversity as a resource for novel microbial products. J. Ind. Microbiol. Biotechnol. 17: 346-351. https://doi.org/10.1007/BF01574765
  6. Vigneshwari R, Sally RA, Jayapradha R. 2015. Cocultivation-powerful tool for the production of secondary metabolites. J. Chem. Pharm. Res. 7: 481-485.
  7. Valgas C, Souza S, Smânia E, Smania JA. 2007. Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38: 369-380. https://doi.org/10.1590/S1517-83822007000200034
  8. Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  9. Pikkemaat M. 2009. Microbial screening methods for detection of antibiotic residues in slaughter animals. Anal. Bioanal. Chem. 395: 893-905. https://doi.org/10.1007/s00216-009-2841-6
  10. Zhang J, Liu X, Liu S. 2009. Agrococcus terreus sp. nov. and Micrococcus terreus sp. nov., isolated from forest soil. Int. J. Syst. Evol. Microbiol. 60: 1897-1903.
  11. Ivanova E, Alexeeva Y, Zhukova N, Gorshkova N, Buljan V, Nicolau D, et al. 2004. Bacillus algicola sp. nov., a novel filamentous organism isolated from brown alga Fucus evanescens. Syst. Appl. Microbiol. 27: 301-307. https://doi.org/10.1078/0723-2020-00269
  12. Asker D, Beppu T, Ueda K. 2007. Mesoflavibacter zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing marine bacterium of the family Flavobacteriaceae. Syst. Appl. Microbiol. 30: 291-296. https://doi.org/10.1016/j.syapm.2006.12.003
  13. Romanenko L. 2003. Pseudoalteromonas agarivorans sp. nov., a novel marine agarolytic bacterium. Int. J. Syst. Evol. Microbiol. 53: 125-131. https://doi.org/10.1099/ijs.0.02234-0
  14. Shao R, Lai Q, Liu X, Sun F, Du Y, Li G, et al. 2013. Zunongwangia atlantica sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 64: 16-20.
  15. Bernbom N, Ng Y, Olsen S, Gram L. 2013. Pseudoalteromonas spp. serve as initial bacterial attractants in mesocosms of coastal waters but have subsequent antifouling capacity in mesocosms and when embedded in paint. Appl. Environ. Microbiol. 79: 6885-6893. https://doi.org/10.1128/AEM.01987-13
  16. Anwar M, Choi S. 2014. Gram-negative marine bacteria: structural features of lipopolysaccharides and their relevance for economically important diseases. Mar. Drugs 12: 2485-2514. https://doi.org/10.3390/md12052485
  17. Jung M, Kim J, Paek W, Lim J, Lee H, Kim P, et al. 2011. Bacillus manliponensis sp. nov., a new member of the Bacillus cereus group isolated from foreshore tidal flat sediment. J. Microbiol. 49: 1027-1032. https://doi.org/10.1007/s12275-011-1049-6
  18. Roberts M, Nakamura L, Cohan F. 1996. Bacillus vallismortis sp. nov., a close relative of Bacillus subtilis, isolated from soil in Death Valley, California. Int. J. Syst. Evol. Microbiol. 46: 470-475.
  19. Poli A, Nicolaus B, Denizci A, Yavuzturk B, Kazan D. 2012. Halomonas smyrnensis sp. nov., a moderately halophilic, exopolysaccharide-producing bacterium. Int. J. Syst. Evol. Microbiol. 63: 10-18.
  20. Kaneko M, Iwashita M. 1987. Antimicrobial susceptibility of Vibrio parahaemolyticus and Vibrio alginolyticus isolated from human feces and foods. Kansenshogaku Zasshi 61: 9-16. https://doi.org/10.11150/kansenshogakuzasshi1970.61.9
  21. Bottone E. 2010. Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23: 382-398. https://doi.org/10.1128/CMR.00073-09
  22. Ushakova N, Nekrasov R, Meleshko N, Laptev G, Il'ina L, Kozlova A, et al. 2013. Effect of Bacillus subtilis on the rumen microbial community and its components exhibiting high correlation coefficients with the host nutrition, growth, and development. Microbiology 82: 475-481. https://doi.org/10.1134/S0026261713040127
  23. Stevens D, Hamilton J, Johnson N, Kim K, Lee J. 2009. Halomonas, a newly recognized human pathogen causing infections and contamination in a dialysis center. Medicine 88: 244-249. https://doi.org/10.1097/MD.0b013e3181aede29
  24. Hubalek Z. 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology 46: 205-229. https://doi.org/10.1016/S0011-2240(03)00046-4
  25. Clinical and Laboratory Standards Institute (CLSI). 2015. Performance standard for antimicrobial susceptibility testing; twenty-second informational supplement, pp. 146-156. Clinical and Laboratory Standards Institute, Wayne, PA, USA.
  26. Shank EA, Kolter R. 2009. New developments in microbial interspecies signaling. Curr. Opin. Microbiol. 12: 205-214. https://doi.org/10.1016/j.mib.2009.01.003
  27. Armstrong E, Yan L, Boyd K, Wright P, Burgess J. 2001. The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461: 37-40. https://doi.org/10.1023/A:1012756913566
  28. Sanchez J, Kouznetsov V. 2010. Antimycobacterial susceptibility testing methods for natural products research. Braz. J. Microbiol. 41: 270-277 https://doi.org/10.1590/S1517-83822010000200001
  29. Pauli G, Case R, Inui T, Wang Y, Cho S, Fischer N, et al. 2005. New perspectives on natural products in TB drug research. Life Sci. 78: 485-494. https://doi.org/10.1016/j.lfs.2005.09.004
  30. Balouiri M, Sadiki M, Ibnsouda S. 2016. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 6: 71-79. https://doi.org/10.1016/j.jpha.2015.11.005
  31. Gibb A. 1999. Plates are better than broth for recovery of fastidious organisms from some specimen material. J. Clin. Microbiol. 37: 875.
  32. Dheilly A, Soum-Soutera E, Klein G, Bazire A, Compere C, Haras D, et al. 2010. Antibiofilm activity of the marine bacterium Pseudoalteromonas sp. strain 3J6. Appl. Environ. Microbiol. 76: 3452-3461. https://doi.org/10.1128/AEM.02632-09
  33. Wilson G, Raftos D, Nair S. 2011. Antimicrobial activity of surface attached marine bacteria in biofilms. Microbiol. Res. 166: 437-448. https://doi.org/10.1016/j.micres.2010.08.003
  34. Goers L, Freemont P, Polizzi K. 2014. Co-culture systems and technologies: taking synthetic biology to the next level. J. R. Soc. Interface 11: 20140065. https://doi.org/10.1098/rsif.2014.0065
  35. Fukuda T, Tsutsumi K, Morita H. 2008. Antibiotic activity in co-culture: influence of Bacillus subtilis on the antibiotic activity of Rhizopus peka. Japan J. Food Eng. 9: 99-106.
  36. Dopazo C, Lemos M, Lodeiros C, Bolinches J, Barja J, Toranzo A. 1988. Inhibitory activity of antibiotic-producing marine bacteria against fish pathogens. J. Appl. Bacteriol. 65: 97-101. https://doi.org/10.1111/j.1365-2672.1988.tb01497.x
  37. Yu M, Wang J, Tang K, Shi X, Wang S, Zhu W, Zhang X. 2011. Purification and characterization of antibacterial compounds of Pseudoalteromonas flavipulchra JG1. Microbiology 158: 835-842.
  38. Gauthier G, Gauthier M, Christen R. 1995. Phylogenetic analysis of the genera Alteromonas, Shewanella, and Moritella using genes coding for small-subunit rRNA sequences and division of the genus Alteromonas into two genera, Alteromonas (Emended) and Pseudoalteromonas gen. nov., and proposal of twelve new species combinations. Int. J. Syst. Bacteriol. 45: 755-761. https://doi.org/10.1099/00207713-45-4-755
  39. Bowman J. 2007. Bioactive compound synthetic capacity and ecological significance of marine bacterial genus Pseudoalteromonas. Mar. Drugs 5: 220-241. https://doi.org/10.3390/md504220
  40. Jin G, Wang S, Yu M, Yan S, Zhang X. 2010. Identification of a marine antagonistic strain JG1 and establishment of a polymerase chain reaction detection technique based on the gyrB gene. Aquac. Res. 41: 1867-1874. https://doi.org/10.1111/j.1365-2109.2010.02591.x
  41. Hayashida-Soiza G, Uchida A, Mori N, Kuwahara Y, Ishida Y. 2008. Purification and characterization of antibacterial substances produced by a marine bacterium Pseudoalteromonas haloplanktis strain. J. Appl. Microbiol. 105: 1672-1677. https://doi.org/10.1111/j.1365-2672.2008.03878.x
  42. Offret C, Desriac F, Le Chevalier P, Mounier J, Jegou C, Fleury Y. 2016. Spotlight on antimicrobial metabolites from the marine bacteria Pseudoalteromonas: chemodiversity and ecological significance. Mar. Drugs 14: 129. https://doi.org/10.3390/md14070129

Cited by

  1. Deep Hypersaline Anoxic Basins as Untapped Reservoir of Polyextremophilic Prokaryotes of Biotechnological Interest vol.18, pp.2, 2017, https://doi.org/10.3390/md18020091
  2. Antimicrobial Activities of Sponge-Derived Microorganisms from Coastal Waters of Central Vietnam vol.8, pp.8, 2020, https://doi.org/10.3390/jmse8080594
  3. Evaluation of the Antibacterial Activity of Spathiphyllum wallisii Extracts Against Human Pathogenic Bacteria vol.23, pp.11, 2017, https://doi.org/10.3923/pjbs.2020.1436.1441
  4. A New Potential Source of Anti-pathogenic Bacterial Substances from Zamioculcas zamiifolia (Lodd.) Engl. Extracts vol.24, pp.2, 2017, https://doi.org/10.3923/pjbs.2021.235.240
  5. Classification of a Violacein-Producing Psychrophilic Group of Isolates Associated with Freshwater in Antarctica and Description of Rugamonas violacea sp. nov. vol.9, pp.1, 2021, https://doi.org/10.1128/spectrum.00452-21