DOI QR코드

DOI QR Code

Isolation of marine algicidal bacteria from surface seawater and sediment samples associated with harmful algal blooms in Korea

유해조류번성 주변의 해수와 침전물에서 살조균의 분리

  • Received : 2015.10.01
  • Accepted : 2016.02.05
  • Published : 2016.03.31

Abstract

This study mainly focused on isolation of marine algicidal bacteria associated with phytoplankton blooms and characterization of algicidal activity against harmful algae. Harmful algal blooms (HABs) found naturally in surface waters have caused many environmental problems worldwide. In this study, forty bacterial strains that have capability of inhibiting harmful algal growth were isolated from Masan Bay, Jinhae Bay, Dol Island, Jangmok Bay, and the Tongyeong Sea, Republic of Korea. The bacteria were screened furthermore for the characteristics on algicidal activities against Cochlodinium polykrikoides, Chattonella marina, Skeletonema costatum, Heterosigma akashiwo, Heterocapsa triquetra, Prorocentrum minimum, and Scrippsiella trochoidea. As a result, the algicidal bacteria that were screened from double over layer agar and microscopic counts tests belonged to genera Pseudomonas, Vibrio, Bacillus, Pseudoalteromonas, Ruegeria, Joostella, Marinomonas, Stakelama, Porphyrobacter, and Albirhodobacter. One of the most important HAB species is Co. polykrikoides and the strongest algicidal activity against the dinoflagellate was 94.00% after 6 h treatment with 10% bacterial culture filtrate. In this study, Marinomonas sp. M Jin 1-8, Stakelama sp. ZB Yeonmyeong 1-11 & 1-13, Porphyrobacter sp. M Yeonmyeong 2-22, and Albirhodobacter sp. 6-R Jin 6-1 were found to be as new genera of bacteria having anti-algal activity. These results suggest that these bacteria might play an important role in controlling phytoplankton blooms.

본 연구는 식물성플랑크톤의 대량증식 조절과 관련된 해양성 살조능이 있는 박테리아의 분리와 유해조류에 대한 분리 균주의 살조능 특성에 주로 초점을 맞추고 있다. 해수 표면에서 자연적으로 발생하는 유해조류번성(HAB)은 전세계적으로 많은 환경문제를 일으키고 있다. 본 연구에서는 유해조류 성장을 억제하는 능력을 가진 40개의 박테리아 균주를 마산만, 진해만, 돌섬, 거제도, 통영 앞바다에서 분리하였다. 분리된 균주들은 다양한 유해조류인 Cochlodinium polykrikoides, Chattonella marina, Skeletonema costatum, Heterosigma akashiwo, Heterocapsa triquetra, Prorocentrum minimum, Scrippsiella trochoidea에 대한 살조특성을 추가로 조사하였다. 살조균주의 선별은 이중층 아가배지와 현미경 계수법을 이용하여 진행하였고 Pseudomonas, Vibrio, Bacillus, Pseudoalteromonas, Ruegeria, Joostella, Marinomonas, Stakelama, Porphyrobacter, Albirhodobacter의 속들에 속하는 균주들이었다. 가장 중요한 유해조류인 Co. polykrikoides에 대한 가장 강력한 살조능은 10% 배양상등액으로 6시간 처리했을 때 94%를 보이는 균주였다. 이 연구를 통해 살조효과를 보이는 새로운 속으로 Marinomonas sp. M Jin 1-8, Stakelama sp. ZB Yeonmyeong 1-11 & 1-13, Porphyrobacter sp. M Yeonmyeong 2-22, Albirhodobacter sp. 6-R Jin 6-1를 새롭게 찾았다. 결론적으로 이들 해양박테리아를 이용하면 식물성플랑크톤 번성을 제어하는데 중요한 역할을 할 것으로 예상된다.

Keywords

References

  1. Amaro, A.M., Fuentes, M.S., Ogalde, S.R., Venegas, J.A., and Suarez-Isla, B.A. 2005. Identification and characterization of potentially algal-lytic marine bacteria strongly associated with the toxic dinoflagellate Alexandrium catenella. J. Eukaryot. Microbiol. 52, 191-200. https://doi.org/10.1111/j.1550-7408.2005.00031.x
  2. Anderson, D.M. 2009. Approaches to monitoring, control and management of harmful algal blooms (HABs). Ocean Coast. Manage. 52, 342-347. https://doi.org/10.1016/j.ocecoaman.2009.04.006
  3. Anderson, D.M., Glibert, P.M., and Burkholder, J.M. 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25, 704-726. https://doi.org/10.1007/BF02804901
  4. Byun, H.G., Jeong, S.Y., Park, Y.T., Lee, W.J., and Kim, S.K. 2002. Algicidal activity of substance purified from marine bacteria metabolites against Cochlodinium polykrikoides. J. Fish. Sci. Technol. 5, 150-155.
  5. Grossart, H.P., Levold, F., Allgaier, M., Simon, M., and Brinkhoff, T. 2005. Marine diatom species harbour distinct bacterial communities. Environ. Microbiol. 7, 860-873. https://doi.org/10.1111/j.1462-2920.2005.00759.x
  6. Guillard, R.L. and Ryther, J.H. 1962. Studies of marine planktonic diatoms. I. Cyclotella nana (Hustedt), and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8, 229-239. https://doi.org/10.1139/m62-029
  7. Hallegraeff, G.M. 1993. A review of harmful algal blooms and their apparent global increase. Phycologia 32, 79-99. https://doi.org/10.2216/i0031-8884-32-2-79.1
  8. Jung, S.W., Kim, B.H., Katano, T., Kong, D.S., and Han, M.S. 2008. Pseudomonas fluorescens HYK0210-SK09 offers species-specific biological control of winter algal blooms caused by freshwater diatom Stephanodiscus hantzschii. J. Appl. Microbiol. 105, 186-195. https://doi.org/10.1111/j.1365-2672.2008.03733.x
  9. Kang, Y.K., Cho, S.Y., and Kang, Y.H. 2008. Isolation, identification and characterization of algicidal bacteria against Stephanodiscus hantzschii and Peridinium bipes for the control of freshwater winter algal blooms. J. Appl. Phycol. 20, 375-386. https://doi.org/10.1007/s10811-007-9267-3
  10. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716-721. https://doi.org/10.1099/ijs.0.038075-0
  11. Kim, M.J., Jeong, S.Y., and Lee, S.J. 2008. Isolation, identification, and algicidal activity of marine bacteria against Cochlodinium polykrikoides. J. Appl. Phycol. 20, 1069-1078. https://doi.org/10.1007/s10811-008-9312-x
  12. Kim, J.D., Kim, B., and Lee, C.G. 2007. Alga-lytic activity of Pseudomonas fluorescens against the red tide causing marine alga Heterosigma akashiwo (Raphidophyceae). Biol. Control 41, 296-303. https://doi.org/10.1016/j.biocontrol.2007.02.010
  13. Kim, J.D., Kim, J.Y., Park, J.K., and Lee, C.G. 2009a. Selective control of the Prorocentrum minimum harmful algal blooms by a novel algal-lytic bacterium Pseudoalteromonas haloplanktis AFMB-008041. Mar. Biotechnol. 11, 463-472. https://doi.org/10.1007/s10126-008-9167-9
  14. Kim, Y.S., Lee, D.S., Jeong, S.Y., Lee, W.J., and Lee, M.S. 2009b. Isolation and characterization of a marine algicidal bacterium against the harmful Raphidophyceae Chattonella marina. J. Microbiol. 47, 9-18. https://doi.org/10.1007/s12275-008-0141-z
  15. Kim, C.H., Park, T.G., and Lee, C.K. 2010. Harmful dinoflagellates and mitigation strategies in Korea. Philipp. J. Sci. 139, 139-147.
  16. Kim, M.C., Yoshinaga, I., Imai, I., Nagasaki, K., Itakura, S., and Ishida, Y. 1998. A close relationship between algicidal bacteria and termination of Heterosigma akashiwo (Raphidophyceae) blooms in Hiroshima Bay, Japan. Mar. Ecol. Prog. Ser. 170, 25-32. https://doi.org/10.3354/meps170025
  17. Lee, S.O., Kato, J., Takiguchi, N., Kuroda, A., Ikeda, T., Mitsutani, A., and Ohtake, H. 2000. Involvement of an extracellular protease in algicidal activity of the marine bacterium Pseudoalteromonas sp. strain A28. Appl. Environ. Microbiol. 66, 4334-4339. https://doi.org/10.1128/AEM.66.10.4334-4339.2000
  18. Lee, C.K., Park, T.G., Park, Y.T., and Lim, W.A. 2013. Monitoring and trends in harmful algal blooms and red tides in Korean coastal waters, with emphasis on Cochlodinium polykrikoides. Harmful Algae 30S, S3-S14.
  19. Lei, X., Li, Y., Chen, Z., Zheng, W., Lai, Q., Zhang, H., Guan, C., Cai, G., Yang, X., Tian, Y., et al. 2014. Altererythrobacter xiamenensis sp. nov., an algicidal bacterium isolated from red tide seawater. Int. J. Syst. Evol. Microbiol. 64, 631-637. https://doi.org/10.1099/ijs.0.057257-0
  20. Mayali, X. and Azam, F. 2004. Algicidal bacteria in the sea and their impact on algal blooms. J. Eukaryot. Microbiol. 51, 139-144. https://doi.org/10.1111/j.1550-7408.2004.tb00538.x
  21. Nagasaki, K., Tomaru, Y., Katanozaka, N., Shirai, Y., Nishida, K., Itakura, S., and Yamaguchi, M. 2004. Isolation and characterization of a novel single-stranded RNA virus infecting the bloom-forming diatom Rhizosolenia setigera. Appl. Environ. Microbiol. 70, 704-711. https://doi.org/10.1128/AEM.70.2.704-711.2004
  22. Oh, J.I., Kim, M.J., Lee, J.Y., Ko, I.J., Kim, W., and Kim, S.W. 2011. Isolation and characterization of algicidal bacteria from Cochlodinium polykrikoides culture. Biotechnol. Bioproc. Eng. 16, 1124-1133. https://doi.org/10.1007/s12257-011-0232-2
  23. Park, J., Jeong, H.J., Yoo, Y.D., and Yoon, E.Y. 2013. Mixotrophic dinoflagellate red tides in Korean waters: Distribution and ecophysiology. Harmful Algae 30S, S28-S40.
  24. Park, S.H., Kwon, K.K., Lee, D.S., and Lee, H.K. 2002. Morphological diversity of marine microorganisms on different isolation media. J. Microbiol. 40, 161-165.
  25. Roth, P.B., Twiner, M.J., Mikulski, C.M., Barnhorst, A.B., and Doucette, G.J. 2008. Comparative analysis of two algicidal bacteria active against the red tide dinoflagellate Karenia brevis. Harmful Algae 7, 682-691. https://doi.org/10.1016/j.hal.2008.02.002
  26. Sengco, M.R. and Anderson, D.M. 2004. Controlling harmful algal blooms through clay flocculation. J. Eukaryot. Microbiol. 51, 169-172. https://doi.org/10.1111/j.1550-7408.2004.tb00541.x
  27. Seong, K.A. and Jeong, H.J. 2013. Interactions between marine bacteria and red tide organisms in Korean waters. Algae 28, 297-305. https://doi.org/10.4490/algae.2013.28.4.297
  28. Shi, R., Huang, H., Qi, Z., Hu, W., Tian, Z., and Dai, M. 2013. Algicidal activity against Skeletonema costatum by marine bacteria isolated from a high frequency harmful algal blooms area in southern Chinese coast. World J. Microbiol. Biotechnol. 29, 153-162. https://doi.org/10.1007/s11274-012-1168-1
  29. Yang, X., Li, X., Zhou, Y., Zheng, W., Yu, C., and Zheng, T. 2014. Novel insights into the algicidal bacterium DH77-1 killing the toxic dinoflagellate Alexandrium tamarense. Sci. Total Environ. 482-483, 116-124. https://doi.org/10.1016/j.scitotenv.2014.02.125
  30. Yang, L., Maeda, H., Yoshikawa, T., and Zhou, G.Q. 2012. Algicidal effect of bacterial isolates of Pedobacter sp. against cyanobacterium Microcystis aeruginosa. Water Sci. Eng. 5, 375-382.
  31. Yang, F., Wei, H.Y., Li, X.Q., Li, Y.H., Li, X.B., Yin, L.H., and Pu, Y.P. 2013. Isolation and characterization of an algicidal bacterium indigenous to lake Taihu with a red pigment able to lyse Microcystis aeruginosa. Biomed. Environ. Sci. 26, 148-154.
  32. Zheng, X., Zhang, B., Zhang, J., Huang, L., Lin, J., Li, X., Zhou, Y., Wang, H., Yang, X., Su, J., et al. 2013. A marine algicidal actinomycete and its active substance against the harmful algal bloom species Phaeocystis globosa. Appl. Microbiol. Biotechnol. 97, 9207-9215. https://doi.org/10.1007/s00253-012-4617-8
  33. Zingone, A. and Enevoldsen, H.O. 2000. The diversity of harmful algal blooms: a challenge for science and management. Ocean Coast. Manage. 43, 725-748. https://doi.org/10.1016/S0964-5691(00)00056-9

Cited by

  1. Characterization of Marinomonas algicida sp. nov., a novel algicidal marine bacterium isolated from seawater vol.67, pp.11, 2017, https://doi.org/10.1099/ijsem.0.002374
  2. Stakelama algicida sp. nov., novel algicidal species of the family Sphingomonadaceae isolated from seawater vol.68, pp.1, 2018, https://doi.org/10.1099/ijsem.0.002506