Browse > Article

Effect of Molecular Chaperones on the Soluble Expression of Alginate Lyase in E. coli  

Shin, Eun-Jung (Department of Biomaterial Control, Dong-Eui University)
Park, So-Lim (Bioleaders Corp.)
Jeon, Sung-Jong (Department of Biomaterial Control, Dong-Eui University)
Lee, Jin-Woo (Department of Biotechnology, Dong-A University)
Kim, Young-Tae (Department of Microbiology, Pukyong National University)
Kim, Yeon-Hee (Department of Biotechnology, Osaka University)
Nam, Soo-Wan (Department of Biomaterial Control, Dong-Eui University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.11, no.5, 2006 , pp. 414-419 More about this Journal
Abstract
When the alginate lyase gene (aly) from Pseudoalteromonas elyakovii was expressed in E. coli, most of the gene product was organized as aggregated insoluble particles known as inclusion bodies. To examine the effects of chaperones on soluble and nonaggregated form of alginate lyase in E. coli, we constructed plasm ids designed to permit the coexpression of aly and the DnaK/DnaJ/GrpE or GroEL/ES chaperones. The results indicate that coexpression of aly with the DnaK/DnaJ/GrpE chaperone together had a marked effect on the yield alginate lyase as a soluble and active form of the enzyme. It is speculated this result occurs through facilitation of the correct folding of the protein. The optimal concentration of L-arabinose required for the induction of the DnaK/DnaJ/GrpE chaperone was found to be 0.05mg/mL. An analysis of the protein bands on SDS-PAGE gel indicated that at least 37% of total alginate lyase was produced in the soluble fraction when the DnaK/DnaJ/GrpE chaperone was coexpressed.
Keywords
alginate lyase; molecular chaperone; coexpression; E. coli;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
Times Cited By Web Of Science : 6  (Related Records In Web of Science)
Times Cited By SCOPUS : 7
연도 인용수 순위
1 Sawabe, T., H. Takahashi, Y. Ezura, and P. Gacesa (2001) Cloning, sequence analysis and expression of Pseudoalteromonas elyakovii IAM 14594 gene (alyPEEC) encoding the extracellular alginate lyase. Carbohydr. Res. 335: 11-21   DOI   ScienceOn
2 Renn, D. (1997) Biotechnology and the red seaweed polysaccharide industry: status, needs and prospects. Trends Biotechnol. 15: 9-14   DOI   ScienceOn
3 Kondo, A., J. Kohda, Y. Endo, T. Shiromizu, Y. Kurokawa, K. Nishihara, H. Yanagi, T. Yura, and H. Fukuda (2000) Improvement of productivity of active horseradish peroxidase in Escherichia coli by coexpression of Dsb proteins. J. Biosci. Bioeng. 90: 600-606   DOI
4 Han, M. J., S. J. Park, T. J. Park, and S. Y. Lee (2004) Roles and applications of small heat shock proteins in the production of recombinant proteins in Escherichia coli. Biotechnol. Bioeng. 88: 426-436   DOI   ScienceOn
5 Dumitru, G. L., Y. Groemping, D. Klostermeier, T. Restle, E. Deuerling, and J. Reinstein (2004) DafA cycles between the DnaK chaperone system and translationalmachinery. J. Mol.Biol. 339: 1179-1189   DOI   ScienceOn
6 Diamant, S., A. P. Ben-Zvi, B. Bukau, and P. Goloubinoff (2000) Size-dependent disaggregation for stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275:21107-21113   DOI   ScienceOn
7 Gragerov, A., E. Nudler, N. Komissarova, G. A. Gaitanaris, M. E. Gottesman, and V. Nikiforov (1992) Cooperation of GroEL/GroES and DnaK/DnaJ heat shock proteins in preventing protein misfolding in Escherichia coli. Proc. Natl. Acad. Sci. USA 89: 10341-10344
8 Weissman, J. S., H. S. Rye, W. A. Fenton, J. M. Beechem, and A. L. Horwich (1996) Characterization of the active intermediate of a GroEL-GroES-mediated protein folding reaction. Cell 84: 481-490   DOI   ScienceOn
9 Ying, B. W., H. Taguchi, H. Ueda, and T. Ueda (2004) Chaperone-assisted folding of a single-chain antibody in a reconstituted translation system. Biochem. Biophys. Res. Commun. 320: 1359-1364   DOI   ScienceOn
10 Yoon, H. J., Y. J. Choi, O. Miyake, W. Hashimoto, K. Murata, and B. Mikami (2001) Effect of Hisl92 mutation on the activity of alginate lyase A1 -III from Sphingomonas species A1. J. Microbiol. Biotechnol. 11: 118-123
11 Chen, Y., J. Song, S. F. Sui, and D. N. Wang (2003) DnaK and DnaJ facilitated the folding process and reduced inclusion body formation of magnesium transporter CorA overexpressed in Escherichia coli. Protein Expr. Purif. 32:221-231   DOI   ScienceOn
12 Guan, Y.-X., H.-X. Pan, Y.-G. Gao, S.-J. Yao, and M.-G. Cho (2005) Refolding and purification of recombinant human interferon-y expressed as inclusion bodies in Escherichia coli using size exclusion chromatography. Biotechnol. Bioprocess Eng. 10: 122-127   과학기술학회마을   DOI   ScienceOn
13 Jin, H. H., N. S. Han, D. K. Kweon, Y. C. Park, and J. H. Seo (2001) Effects of environmental factors on in vivo folding of Bacillus macerans cyclodextrin glycosyltrans-ferase in recombinant Escherichia coli. J. Microbiol. Biotechnol. 11:92-96
14 Sareen, D., R. Sharma, and R. M. Vohra (2001) Chaper-one-assisted overexpression of an active D-carbamoylase from Agrobacterium tumefaciens AM 10. Protein Expr. Purif. 23: 374-379   DOI   ScienceOn
15 Kim, H. and I. H. Kim (2005) Refolding of fusion ferritin by gel filtration chromatography (GFC). Biotechnol. Bioprocess Eng. 10: 500-504   과학기술학회마을   DOI   ScienceOn
16 Gonzalez-Montalban, N., M. M. Carrio, S. Cuatrecasas, A. Aris, and A. Villaverde (2005) Bacterial inclusion bodies are cytotoxic in vivo in absence of functional chaperones DnaK or GroEL. J. Biotechnol. 118: 406-412   DOI   ScienceOn
17 Szabo, A., T. Langer, H. Schroder, J. Flanagan, B. Bukau, and F. U. Hartl (1994) The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system-DnaK, DnaJ, and GrpE. Proc. Natl. Acad. Sci. USA 91: 10345-. 10349
18 Murata, K, T. Inose, T. Hisano, S. Abe, Y. Yonemoto, T. Yamashita, M. Takagi, K. Sakaguchi, A. Kimura, and T. Imanaka (1993) Bacterial alginate lyase: enzymology, genetics and application. J. Ferment. Bioeng. 76: 427-437   DOI   ScienceOn
19 Hicks, S. J. and P. Gacesa (1996) Heterologous expression of full-length and truncated forms of the recombinant guluronate-specific alginate lyase of Klebsiella pneumoniae. Enzyme Microb. Technol. 19: 68-73   DOI   ScienceOn
20 Kim, J. E., E. J. Kim, W. J. Rhee, and T. H. Park (2005) Enhanced production of recombinant protein in Escherichia coli using silkworm hemolymph. Biotechnol. Bioprocess Eng. 10:353-356   과학기술학회마을   DOI   ScienceOn
21 Preiss, J. and G. Ashwell (1962) Alginic acid metabolism in bacteria. J. Biol. Chem. 237: 309-316
22 Park, S. L., E. J. Shin, S. P. Hong, S. J. Jeon, and S. W. Nam (2004) Production of soluble human granulocyte colony stimulating factor in E. coli by molecular chaperones. J. Microbiol. Biotechnol. 14: 216-219
23 Kwak, Y. H., S. J. Kim, K. Y Lee, and H. B. Kim (2000) Stress responses of the Escherichia coli groE promoter. J. Microbiol. Biotechnol. 10: 63-68
24 Kwon, M. J., S. L. Park, S. K. Kim, and S. W. Nam (2002) Overproduction of Bacillus macerans cyclodextrin glucanotransferase in E. coli by coexpression of GroEL/ES chaperone. J. Microbiol. Biotechnol. 12: 1002-1005
25 Hoshino, K., A. Eda, Y. Kurokawa, and N. Shimizu (2002) Production of brain-derived neurotrophic factor in Escherichia coli by coexpression of Dsb proteins. Biosci. Biotechnol. Biochem. 66: 344-350   DOI   ScienceOn
26 Chung, K. T., T. H. Lee, and G. S. Kang (2003) Isolation of proteins that specifically interact with the ATPase domain of mammalian ER chaperone, BiP. Biotechnol. Bioprocess Eng. 8: 192-198   DOI   ScienceOn
27 Yoon, H. J., W. Hashimoto, O. Miyake, M. Okamoto, B. Mikami, and K. Murata (2000) Overexpression in Escherichia coli, purification, and characterization of Sphin-gomonas sp. Al alginate lyases. Protein Expr. Purif. 19: 84-90   DOI   ScienceOn
28 Park, S. L., M. J. Kwon, S. K. Kim, and S. W. Nam (2004) GroEL/ES chaperone and low culture temperature synergistically enhanced the soluble expression of CGTase in E. coli. J. Microbiol. Biotechnol. 14: 216-219
29 Thomas, J. G., A. Ayling, and F. Baneyx (1997) Molecular chaperones, folding catalysts, and the recovery of active recombinant proteins from E. coli. Appl. Biochem. Biotechnol. 66: 197-238   DOI   ScienceOn
30 Nishihara, K., M. Kanemori, M. Kitagawa, H. Yanagi, and T. Yura (1998) Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64: 1694-1699
31 Kurokawa, Y., H. Yanagi, and T. Yura (2000) Overexpression of protein disulfide isomerase DsbD stabilize multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66: 3960-3965   DOI
32 Lamark, T., M. Ingebrigtsen, C. Bjornstad, T. Melkko, T. E. Mollnes, and E. W. Nielsen (2001) Expression of active human C1 inhibitor serpin domain in Escherichia coli. Protein Expr. Purif. 22: 349-358   DOI   ScienceOn
33 Kim, C. I., M. D. Kim, Y. C. Park, N. S. Han, and J. H. Seo (2000) Refolding of Bacillus macerans cyclodextrin glucanotransferase expressed as inclusion bodies in recombinant Escherichia coli. J. Microbiol. Biotechnol. 10: 632-637
34 Onsoyen, E. (1996) Commercial applications of alginates. Carbohydr. Eur. 14: 26-31