• Title/Summary/Keyword: Proton correlation

Search Result 73, Processing Time 0.032 seconds

Dependence of solar proton peak flux on 3-dimensional CME parameter

  • Park, Jinhye;Moon, Yong-Jae;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.64.1-64.1
    • /
    • 2015
  • In the present study, we examine the dependence of solar proton peak flux at SOHO and STEREO on 3-D CME parameters (radial speed, angular width, and longitudinal angular separation between its source region and the magnetic footpoints of spacecraft). For this we consider 38 proton enhancements of 16 SEP events observed by SOHO, STEREO-A, and/or B from 2010 August to 2013 June. As a result, we find that the enhancements are strongly dependent on these three parameters. The correlation coefficient between proton peak flux and CME speed is about 0.42 for the cases the footpoints are located inside the lateral boundaries of angular widths, while there is no correlation for the events outside the boundaries. The correlation coefficient between peak flux and angular separation is -0.51. We find that most of strong proton events occur when their angular separations are closer to zero, supporting that most of the proton fluxes are generated near the CME noses rather than their flanks.

  • PDF

The Study of Lipid Proton Composition Change in a Rat Model of High Fat Diet Induced Fatty Liver by Magnetic Resonance Spectroscopy Analysis (고지방식이 유도성 지방간 쥐 모델에서 간의 자기공명분광 분석을 이용한 지질 양성자 조성 변화 연구)

  • Kim, Sang-Hyeok;Yu, Seung-Man
    • Journal of radiological science and technology
    • /
    • v.44 no.4
    • /
    • pp.315-325
    • /
    • 2021
  • The purpose of this study is to investigate the changes in lipid proton (LP) composition according to the induced obese fatty liver and to use it as basic data for treatment and diagnosis of fatty liver in the future. The phantom study was conducted to identify differences between STEAM and PRESS Pulse sequences in LP concentration. A high-fat diet (60%) was administered to eight Sprague-Dawley rats to induce obesity and fatty liver disease. Baseline magnetic resonance imaging /spectroscopy data were obtained prior to the introduction of high-fat diet, and data acquisition experiments were performed after eight weeks using procedures identical to those used for baseline studies. The six lipid proton metabolites were calculated using LCModel software. The correlation between the fat percentage and each LP, revealed that the methylene protons at 1.3 ppm showed the highest positive correlation. The α-methylene protons to carboxyl and diallylic protons showed negative correlation with fat percentage. The methylene proton showed the highest increase in the LP; however, it constituted only 71.86% of the total LP concentration. The methylene proton plays a leading role in fat accumulation in liver parenchyma.

Effects on the Proton Conduction Limiting Barriers and Trajectories in BaZr0.875Y0.125O3 Due to the Presence of Other Protons

  • Gomez, Maria A.;Fry, Dana L.;Sweet, Marie E.
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.5
    • /
    • pp.521-528
    • /
    • 2016
  • Kinetic Monte Carlo (KMC) and graph searches show that proton conduction limiting barriers and trajectories in $BaZr_{0.875}Y_{0.125}O_3$ are affected by the presence of other protons. At 1000 K, KMC limiting conduction barriers increase from 0.39 eV to 0.45 eV as the proton number is increased. The proton-proton radial distribution begins to rise at $2{\AA}$ and peaks at $4{\AA}$, which is half the distance expected, based on the proton concentration. Density functional theory (DFT) calculations find proton/proton distances of 2.60 and $2.16{\AA}$ in the lowest energy two-proton configurations. A simple average of the limiting barriers for 7-10 step periodic long range paths found via graph theory at 1100 K shows an increase in activation barrier from 0.32 eV to 0.37 eV when a proton is added. Both KMC and graph theory show that protons can affect each other's pathways and raise the overall conduction barriers.

Quantum Mechanical Studies for Proton Transfer in HOCl + HCl and H2O + ClONO2 on Water Clusters

  • Kim, Yong-Ho;Park, Chea-Yong;Kim, Kyung-Hyun
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.1953-1961
    • /
    • 2005
  • We have performed high-level quantum mechanical calculation for multiple proton transfer in HOCl + HCl and $H_2O$ + $ClONO_2$ on water clusters, which can be used as a model of the reactions on ice surface in stratospheric clouds. Multiple proton transfer on ice surface plays crucial role in these reactions. The structures of the clusters with 0-3 water molecules and the transition state structures for the multiple proton transfer have been calculated. The energies and barrier heights of the proton transfer were calculated at various levels of theory including multi-coefficient correlated quantum mechanical methods (MCCM) that have recently been developed. The transition state structures and the predicted reaction mechanism depend very much on the level of theory. In particular, the HF level can not correctly predict the TS structure and barrier heights, so the electron correlation should be considered appropriately.

Proton Irradiation Effects on GaN-based devices

  • Keum, Dongmin;Kim, Hyungtak;Cha, Ho-Young
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.119-124
    • /
    • 2021
  • Along with the needs for feasibility in the field of space applications, interests in radiation-hardened electronics is growing rapidly. Gallium nitride (GaN)-based devices have been widely researched so far owing to superb radiation resistance. Among them, research on the most abundant protons in low earth orbit (LEO) is essential. In this paper, proton irradiation effects on parameter changes, degradation mechanism, and correlation with reliability of GaN-based devices are summarized.

Theoretical construction of solar wind proton temperature anisotropy versus beta inverse correlation

  • Seough, Jungjoon;Yoon, Peter H.;Kim, Khan-Hyuk;Lee, Dong-Hun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.118.1-118.1
    • /
    • 2012
  • In situ observations from the Wind spacecraft that statistically analyzed the solar wind proton at 1 AU has indicated that the measured proton temperature anisotropies seems to be regulated by the oblique instabilities (the mirror and oblique firehose). This result is in contradiction with the prediction of linear kinetic theory that the ion-cyclotron (for ${\beta}_{\parallel}$ < 2) and parallel firehose (for ${\beta}_{\parallel}$ <10) would dominate over the oblique instabilities. Various kinds of physical mechanisms have been suggested to explain this disagreement between the observations and linear theory. All of the suggestions consider the solar wind as a unoform magnetized plasma. However the real space environment is replete with the intermediate spatio-temporal scale variations associated with various physical quantities, such as the magnetic field intensity and the solar wind density. In this paper we present that the pervasive intermediate-scale temporal variation of the local magnetic field intensity can lead to the modification of the proton temperature anisotropy versus beta inverse correlation for temperature-anisotropy-driven instabilities. By means of quasilinear kinetic theory involving such temporal variation, we construct the simulated solar wind proton data distribution associated the magnetic fluctuations in (${\beta}_{\parallel}$, $T_{\perp}/T_{\parallel}$) space. It is shown that the theoretically simulated proton distribution and a general trend of the enhanced fluctuations bounded by the oblique instabilities are consistent with in situ observations. Furthermore, the measure magnetic compressibility can be accounted for by the magnetic spectral signatures of the unstable modes.

  • PDF

Determination of Proton Beam Position Based on Prompt Gamma Ray Detection (즉발감마선을 이용한 양성자 빔 위치 측정에 관한 연구)

  • Seo, Kyu-Seok;Kim, Jong-Won;Kim, Chan-Hyeong
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2004.11a
    • /
    • pp.69-71
    • /
    • 2004
  • The proton therapy of radiation therapy methods using Bragg Peak which is proton beam's characteristic dose distribution can give a normal tissue lower dose than cancer, comparing with the former existing radiation therapy methods. For exact treatment and patient' safety, we need to know proton beam's position in body, but a proton beam completely stops at treatment region and proton beam's range is uncertainly made by the variety of organs having each different density, so we aren't able to find a proton beam' position by suitable methods yet. With Monte Carlo Computing Method, as a result that we had simulated prompt gamma detection system using correlation of proton beam's absorbed dose distribution about water and prompt gamma distribution by nuclear interaction occurred by collisions of proton and water's hydrogen atoms, we could confirm that a proton beam's position was able to detect by using simulated prompt gamma detection system in body on the real-time

  • PDF

GROUND LEVEL ENHANCEMENTS IN RELATION WITH ENERGETIC SOLAR FEATURES AND DISTURBANCES IN SOLAR WIND PLASMA PARAMETERS

  • VERMA, PYARE LAL
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.47-51
    • /
    • 2015
  • Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar flares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton flux of energy of ${\geq}60Mev$. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton flux of energy (${\geq}60Mev$). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.

Dependence of solar proton events on X-ray flare peak flux, longitude, and impulsive time

  • Park, Jin-Hye;Moon, Yong-Jae;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.37.2-37.2
    • /
    • 2009
  • In this study, we present a new empirical forecasting method of solar proton events based on flare parameters. For this we used NOAA solar energetic particle (SEP) events from 1976 to 2006 and their associated X-ray flare data. As a result, we found that about only 3.5% (1.9% for M-class and 21.3% for X-class) of the flares are associated with the proton events. It is also found that this fraction strongly depends on longitude; for example, the fraction for $30W^{\circ}$ < L < $90W^{\circ}$ is about three times larger than that for $30^{\circ}E$ < L < $90^{\circ}E$. The occurrence probability of solar proton events for flares with long duration (> 0.3 hours) is about 2 (X-class flare) to 7 (M-class flare) times larger than that for flares with short duration (< 0.3 hours). The relationship between X-ray flare peak flux and proton peak flux as well as its correlation coefficient are strongly dependent on longitude. Using these results for prediction of proton flux, we divided the data into 6 subgroups depending on two parameters: (1) 3 longitude ranges (east, center, and west) and (2) flare impulsive times (long and short). For each subgroup, we make a linear regression between the X-ray flare peak flux and the corresponding proton peak flux. The result shows that the proton flux in the eastern region is much better correlated with the X-ray flux than that in the western region.

  • PDF

HMQC vs HSQC for Small Molecules

  • Kim, Eunhee;Cheong, Hae-Kap
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.21 no.4
    • /
    • pp.131-134
    • /
    • 2017
  • Proton detected Heteronuclear Multiple Quantum Coherence (HMQC) and Heteronuclear Single Quantum Coherence (HSQC) essentially provide the same information - correlation of the chemical shift of the proton to J-coupled hetero nuclei such as $^{13}C$ or $^{15}N$ nuclei. This paper is a practical note for the students who ask which one is better and which methods they use routinely. Artifact suppression using phase cycling and gradient pulses are discussed.