Browse > Article
http://dx.doi.org/10.4191/kcers.2016.53.5.521

Effects on the Proton Conduction Limiting Barriers and Trajectories in BaZr0.875Y0.125O3 Due to the Presence of Other Protons  

Gomez, Maria A. (Department of Chemistry, Mount Holyoke College)
Fry, Dana L. (Department of Chemistry, Mount Holyoke College)
Sweet, Marie E. (Department of Chemistry, Mount Holyoke College)
Publication Information
Abstract
Kinetic Monte Carlo (KMC) and graph searches show that proton conduction limiting barriers and trajectories in $BaZr_{0.875}Y_{0.125}O_3$ are affected by the presence of other protons. At 1000 K, KMC limiting conduction barriers increase from 0.39 eV to 0.45 eV as the proton number is increased. The proton-proton radial distribution begins to rise at $2{\AA}$ and peaks at $4{\AA}$, which is half the distance expected, based on the proton concentration. Density functional theory (DFT) calculations find proton/proton distances of 2.60 and $2.16{\AA}$ in the lowest energy two-proton configurations. A simple average of the limiting barriers for 7-10 step periodic long range paths found via graph theory at 1100 K shows an increase in activation barrier from 0.32 eV to 0.37 eV when a proton is added. Both KMC and graph theory show that protons can affect each other's pathways and raise the overall conduction barriers.
Keywords
Proton conduction; Barium zirconate; Yttrium doped; Proton trajectories; Proton correlation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. A. Gomez, D. Shepardson, L. T. Nguyen, and T. Kehinde, "Periodic Long Range Proton Conduction Pathways in Pseudo-Cubic and Orthorhombic Perovskites," Solid State Ionics, 213 8-13 (2011).
2 J. Scott, T. Ideker, R. M. Karp, and R. Sharan, "Efficient Algorithms for Detecting Signaling Pathways in Protein Interaction Networks," pp. 1-13 in Research in Computational Molecular Biology, Vol. 3500, Springer Berlin Heidelberg, Heidelberg, 2005.
3 H. G. Bohn and T. Schober, "Electrical Conductivity of the High-Temperature Proton Conductor $BaZr_{0.9}Y_{0.1}O_{2.95}$," J. Am. Ceram. Soc., 83 [4] 768-72 (2000).
4 M. A. Gomez and F.-J. Liu, "Protons in Al doped $BaZrO_3$ Escape Dopant Traps to Access Long Range Proton Conduction Highways," Solid State Ionics, 252 40-7 (2013).   DOI
5 R. Krueger, F. Haibach, D. Fry, and M. Gomez, "Centrality Measures Highlight Proton Traps and Access Points to Proton Highways in Kinetic Monte Carlo Trajectories," J. Chem. Phys., 142 [15] 154110 (2015).   DOI
6 K. Kreuer, "On the Development of Proton Conducting Materials for Technological Applications," Solid State Ionics, 97 [1] 1-15 (1997).   DOI
7 K. Kreuer, "On the Complexity of Proton Conduction Phenomena," Solid State Ionics, 136 149-60 (2000).
8 K. D. Kreuer, "Proton-Conducting Oxides," Annu. Rev. Mater. Res., 33 [1] 333-59 (2003).   DOI
9 M. E. Bjorketun, P. G. Sundell, and G. Wahnstrom, "Effect of Acceptor Dopants on the Proton Mobility in $BaZrO_3$: A Density Functional Investigation," Phys. Rev. B, 76 [5] 054307 (2007).
10 M. E. Bjorketun, P. G. Sundell, G. Wahnstrom, and D. Engberg, "A Kinetic Monte Carlo Study of Proton Diffusion in Disordered Perovskite Structured Lattices Based on First-Principles Calculations," Solid State Ionics, 176 [39] 3035-40 (2005).   DOI
11 B. Merinov and W. Goddard III, "Proton Diffusion Pathways and Rates in Y-doped BaZrO3 Solid Oxide Electrolyte from Quantum Mechanics," J. Chem. Phys., 130 [19] 194707 (2009).   DOI
12 A. Bilic and J. D. Gale, "Ground State Structure of $BaZrO_3$: A Comparative First-Principles Study," Phys. Rev. B, 79 [17] 174107 (2009).   DOI
13 A. Bilic and J. D. Gale, "Proton Mobility in the In-doped $CaZrO_3$ Perovskite Oxide," Chem. Mater., 19 [11] 2842-51 (2007).   DOI
14 A. Bilic and J. D. Gale, "Simulation of Proton Diffusion in In-doped $CaZrO_3$," Solid State Ionics, 179 [21] 871-74 (2008).   DOI
15 M. S. Islam, R. A. Davies, and J. D. Gale, "Proton Migration and Defect Interactions in the $CaZrO_3$ Orthorhombic Perovskite: A Quantum Mechanical Study," Chem. Mater., 13 [16] 2049-55 (2001).   DOI
16 Y. Liu, M. Yoshino, K. Tatsumi, I. Tanaka, M. Morinaga, and H. Adachi, "Local Geometry and Energetics of Hydrogen in Orthorhombic $SrZrO_3$," Mater. Trans., 46 [6] 1106-11 (2005).   DOI
17 K. D. Kreuer, W. Munch, M. Ise, T. He, A. Fuchs, U. Traub, and J. Maier, "Defect Inter- Actions in Proton Conducting Perovskite-type Oxides," Ber. Bunsen-Ges., 101 [9] 1344-50 (1997).
18 C. Shi, M. Yoshino, and M. Morinaga, "First-Principles Study of Protonic Conduction in In-doped $AZrO_3$ (A=Ca, Sr, Ba)," Solid State Ionics, 176 [11] 1091-96 (2005).   DOI
19 C. S. Shi and M. Morinaga, "Doping Effects on Proton Incorporation and Conduction in $SrZrO_3$," J. Comput. Chem., 27 [6] 711-18 (2006).   DOI
20 K. D. Kreuer, T. Dipper, Y. Baikov, and J. Maier, "Water Solubility, Proton and Oxygen Diffusion in Acceptor Doped $BaCeO_3$: A Single Crystal Analysis," Solid State Ionics, 86-88 613 (1996).   DOI
21 K. D. Kreuer, W. Munch, U. Traub, and J. Maier, "On Proton Transport in Perovskite-type Oxides and Plastic Hydroxides," Ber. Bunsen-Ges., 102 [3] 552-59 (1998).   DOI
22 K. D. Kreuer, S. Adams, W. Munch, A. Fuchs, U. Klock, and J. Maier, "Proton Conducting Alkaline Earth Zirconates and Titanates for High Drain Electrochemical Applications," Solid Sate Ionics, 145 [1] 295-306 (2001).   DOI
23 W. Munch, G. Seifert, K. D. Kreuer, and J. Maier, "A Quantum Molecular Dynamics Study of Proton Conduction Phenomena in $BaCeO_3$," Solid State Ionics, 86-87 647 (1996).
24 W. Munch, G. Seifert, K. D. Kreuer, and J. Maier, "A Quantum Molecular Dynamics Study of Cubic Phase of $BaTiO_3$ and $BaZrO_3$," Solid State Ionics, 97 [1] 39-44 (1997).   DOI
25 W. Munch, K. D. Kreuer, G. Seifert, and J. Maier, "A Quantum Molecular Dynamics Study of Proton Diffusion in $SrTiO_3$ and $CaTiO_3$," Solid State Ionics, 125 [1] 39-45 (1999).   DOI
26 M. A. Gomez, M. Chunduru, L. Chigweshe, L. Foster, S. J. Fensin, K. M. Fletcher, and L. E. Fernandez, "The Effect of Yttrium Dopant on the Proton Conduction Pathways of $BaZrO_3$, a Cubic Perovskite," J. Chem. Phys., 132 [21] 214709 (2010).   DOI
27 W. Munch, K. D. Kreuer, S. T. Adams, G. Seifert, and J. Maier, "The Relation between Crystal Structure and the Formation and Mobility of Protonic Charge Carriers in Perovskite-type Oxides: A Case Study of Y-doped $BaCeO_3$ and $SrCeO_3$," Phase Transitions, 68 [3] 567-86 (1999).   DOI
28 W. Munch, K. D. Kreuer, G. Seifert, and J. Maier, "Proton Diffusion in Perovskites: Comparison between $BaCeO_3$, $BaZrO_3$, $SrTiO_3$, and $CaTiO_3$ Using Quantum Molecular Dynamics," Solid State Ionics, 136 183-89 (2000).
29 M. A. Gomez, M. A. Griffin, S. Jindal, K. D. Rule, and V. R. Cooper, "The Effect of Octahedral Tilting on Proton Binding Sites and in Pseudo-Cubic Perovskite Oxides," J. Chem. Phys., 123 [9] 094703 (2005).   DOI
30 M. A. Gomez, S. Jindal, K. M. Fletcher, L. Foster, A. D. A. Addo, D. Valentin, C. Ghenoiu, and A. Hamilton, "Comparison of Proton Conduction in $KTaO_3$ and $SrZrO_3$," J. Chem. Phys., 126 [19] 194701 (2007).   DOI
31 M. A. Gomez, M. Chunduru, L. Chigweshe, and K. M. Fletcher, "The Effect of Dopant at the Zr Site on the Proton Conduction Pathways of $SrZrO_3$: An Orthorhombic Perovskite," J. Chem. Phys., 133 [6] 064701 (2010).   DOI
32 C. Y. Jones, J. Wu, L. LiPing, and S. M. Haile, "Hydrogen Content in Doped and Undoped $BaPrO_3$ and $BaCeO_3$ by Cold Neutron Prompt-Gamma Activation Analysis," J. Appl. Phys., 97 [11] 114908 (2005).   DOI
33 N. Bork, N. Bonanos, J. Rossmeist, and T. Vegge, "Thermodynamic and Kinetic Properties of Hydrogen Defect Pairs in $SrTiO_3$ from Density Functional Theory," Phys. Chem. Chem. Phys., 13 [33] 15256-63 (2011).   DOI
34 http://theory.cm.utexas.edu/vtsttools/dymmat.html#dymmat. Accessed on 26/05/2015.
35 A. F. Voter, "Introduction to the Kinetic Monte Carlo Method," pp. 1-23 in Radiation Effects in Solids, Ed. by K. E. Sickafus and E. A. Kotomin, Springer, Netherlands, 2007.
36 R. Pornprasertsuk, J. Cheng, H. Huang, and F. Prinz, "Electrochemical Impedance Analysis of Solid Oxide Fuel Cell Electrolyte Using Kinetic Monte Carlo Technique," Solid State Ionics, 178 [3] 195-205 (2007).   DOI
37 G. Kresse, Ab Initio Molekular Dynamik Fur Flussige Metalle, in Ph.D. thesis, Technische Universittat, Wien, 1993.
38 G. Kresse and J. Hafner, "Ab Initio Molecular-Dynamics for Liquid-Metals," Phys. Rev. B, 47 [1] 558-561 (1993).   DOI
39 G. Henkelman, B. P. Uberuaga, and H. Jonsson, "A Climbing Image Nudge Elastic Band Method for Finding Saddle Points and Minimum Energy Paths," J. Chem. Phys., 113 [22] 9901-4 (2000).   DOI
40 A.-M. Azad and S. Subramaniam, "Temperature Dependence of the Dielectric Response of $BaZrO_3$ by Immittance Spectroscopy," Mater. Res. Bull., 37 [1] 11-21 (2002).   DOI
41 F. Iguchi, T. Tsurui, N. Sata, Y. Nago, and H. Yugami, "The Relationship between Chemical Composition Distributions and Specific Grain Boundary Conductivity in Ydoped $BaZrO_3$ Proton Conductors," Solid State Ionics, 180 [6] 563-68 (2009).   DOI
42 Y. Yamazaki, R. Hernandez-Sanches, and S. M. Haile, "High Total Proton Conductivity in Large-Grained Yttrium-doped Barium Zirconate," Chem. Mater., 21 [13] 2755-62 (2009).   DOI
43 P. Babilo, T. Uda, and S. Haile, "Processing of Yttriumdoped Barium Zirconate for High Proton Conductivity," J. Mater. Res., 22 [05] 1322-30 (2007).   DOI
44 J. W. Bennett, I. Grinberg, and A. M. Rappe, "Effect of Symmetry Lowering on the Dielectric Response of $BaZrO_3$," Phys. Rev. B, 73 [18] 180102 (2006).   DOI
45 C. Kjolseth, H. Fjeld, O. Prytz, P. I. Dahl, C. Estournes, R. Haugsrud, and T. Norby, "Space- Charge Theory Applied to Grain Boundary Impedance of Proton Conducting $BaZr_{0.9}Y_{0.1}O_{3-{\delta}}$," Solid State Ionics, 181 [5] 268-75 (2010).   DOI