• Title/Summary/Keyword: Protection against infection

Search Result 199, Processing Time 0.035 seconds

Immunoactivity of Ginsenosides Re and Rg1 that Enhances Resistance of Mice Against Experimental Disseminated Candidiasis

  • Han, Yong-Moon;Jin, Byung-Suk;Ko, Sung-Kwon;Lee, Jue-Hee
    • Natural Product Sciences
    • /
    • v.10 no.3
    • /
    • pp.134-139
    • /
    • 2004
  • In this study, an immunoactivity of panaxtriol ginsenosides Re and Rg1 against infection due to Candida albicans was investigated. The ginsenosides were extracted from Red Ginseng with 85% ethanol and heat-treatment and were analyzed by HPLC on water-acetonitrile as a mobile phase. The HPLC analysis revealed that the extract contained ginsenosides Re and Rg1, which were eluted as a combined peak. By agar diffusion susceptibility, the mixture of Re and Rg1 had no growth-inhibitory activity on C. albicans yeast cells. However, in animal tests BALB/c mice given the mixture of Re and Rg1 intraperitoneally (Lp.) before intravenous (Lv.) infection with live C. albicans yeast cells had longer mean survival times (MST) than MST of control mice groups that received only buffer solution instead of Re and Rg1. In experiments 60% of the ginsenosides-treated mice survived the entire duration of the 50-day observation. The Re and Rg1 mixture induced production of nitric oxide when interacted with RAW 264.7 macrophage cell line. In addition, the mixture caused morphological change of the macrophages. These data indicate that immunostimulation by the Re and Rg1 may be responsible for the protection of mice against disseminated candidiasis.

Antibody Induced by the JY-Pol Pneumococcal Conjugate Protects Mice Against systemic Infection Due to Streptococcus pneumoniae (JY-Pol 접합백신으로 유도된 항페렴구균 항체의 보호효과)

  • Lee, Jue-Hee;Han, Yong-Moon
    • YAKHAK HOEJI
    • /
    • v.48 no.6
    • /
    • pp.369-373
    • /
    • 2004
  • We previously reported that Streptococcus pneumoniae capsule attached to the surface protein (JY-Pol) was protective to systemic pneumococcal infection. The JY -Pol antigen induced IgM, IgG, and IgA in mice and provoked cell-mediated immunity. In this current study, we investigated the effect of anti JY-Pol antiserun and monoclonal antibody C2 (Mab C2) specific for the JY-Pol antigen against the pneumococcal disease. Mice that were given the antiserum survived longer than mice that received antiserum pre-absorbed with S.pneumoniae cells or DPBS as a negative control. Heat-treated anti JY-Pol antiserum resulted in survival rates similar to intact fresh JY-Pol antiserum. Mab C2 isolated from JY-Pol-immunized mice also enhanced resistance of naive mice against the pneumococcal diseaser. This protection by Mab C2 appeared to be mediated by opsonization as determined in a RAW 264.7 monocyte/macrophage cell line. Epitope analysis showed that Mab C2 epitope consisted of glucuronic acid and glucose that blocked the interaction of JY-Pol to the C2. Taken together, these data indicate that the antiserum induced by the JY-Pol, a naturally pneumococcal conjugate formula, mediated the protection by passive transfer, which was confirmed by protective effect of Mab C2.

Transcription Factor PU.1 Inhibits Aspergillus fumigatus Infection via Surfactant Protein-D

  • Kim, Sung-Su
    • Biomedical Science Letters
    • /
    • v.24 no.3
    • /
    • pp.175-182
    • /
    • 2018
  • Aspergillosis is a life-threatening disease in individuals with compromised immune systems. Fungal invasion is a highly critical process during host cellular infection. Several papers have reported that transcription factors are responsible for the infection process. To investigate what transcription factors are involved in the process in an effort to inhibit fungal infection into cells, I checked the surfactant protein family and PU.1 transcription factor levels in A549 cells infected with A. fumigatus conidia. PU.1 and surfactant protein-D levels were reduced in cells infected with fungal conidia. I then observed an increase in surfactant protein-D on PU.1-overexpressed cells. Infection of A. fumigatus conidia was decreased in PU.1-overexpressed cells, whereas the suppression of PU.1 did not lead to any changes in cases of A. fumigatus conidia infection. These results indicate that PU.1 inhibits the infection of A. fumigatus conidia via the expression of surfactant protein-D, suggesting that PU.1 is a key transcription factor for protection against A. fumigatus invasion.

Protection of palmitic acid treatment in RAW264.7 cells and BALB/c mice during Brucella abortus 544 infection

  • Reyes, Alisha Wehdnesday Bernardo;Huy, Tran Xuan Ngoc;Vu, Son Hai;Kim, Hyun Jin;Lee, Jin Ju;Choi, Jeong Soo;Lee, John Hwa;Kim, Suk
    • Journal of Veterinary Science
    • /
    • v.22 no.2
    • /
    • pp.18.1-18.12
    • /
    • 2021
  • Background: We previously elucidated the protective mechanism of Korean red ginseng oil (RGO) against Brucella abortus infection, and our phytochemical analysis revealed that palmitic acid (PA) was an abundant component of RGO. Consequently, we investigated the contribution of PA against B. abortus. Objectives: We aimed to investigate the efficacy of PA against B. abortus infection using a murine cell line and a murine model. Methods: Cell viability, bactericidal, internalization, and intracellular replication, western blot, nitric oxide (NO), and superoxide (O2-) analyses and flow cytometry were performed to determine the effects of PA on the progression of B. abortus infection in macrophages. Flow cytometry for cytokine analysis of serum samples and bacterial counts from the spleens were performed to determine the effect of PA in a mouse model. Results: PA did not affect the growth of B. abortus. PA treatment in macrophages did not change B. abortus uptake but it did attenuate the intracellular survivability of B. abortus. Incubation of cells with PA resulted in a modest increase in sirtuin 1 (SIRT1) expression. Compared to control cells, reduced nitrite accumulation, augmented O2-, and enhanced pro-inflammatory cytokine production were observed in PA-treated B. abortus-infected cells. Mice orally treated with PA displayed a decreased serum interleukin-10 level and enhanced bacterial resistance. Conclusions: Our results suggest that PA participates in the control of B. abortus within murine macrophages, and the in vivo study results confirm its efficacy against the infection. However, further investigations are encouraged to completely characterize the mechanisms involved in the inhibition of B. abortus infection by fatty acids.

The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis

  • Lu, Kai;Zhang, Min;Yang, Ran;Zhang, Min;Guo, Qinjun;Baek, Kwang-Hyun;Xu, Houjuan
    • The Plant Pathology Journal
    • /
    • v.35 no.2
    • /
    • pp.91-99
    • /
    • 2019
  • Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.

Construction and Immunogenicity of Recombinant Swinepox Virus Expressing Outer Membrane Protein L of Salmonella

  • Fang, Yizhen;Lin, Huixing;Ma, Zhe;Fan, Hongjie
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.7
    • /
    • pp.1173-1181
    • /
    • 2016
  • Salmonella spp. are gram-negative flagellated bacteria that cause a variety of diseases in humans and animals, ranging from mild gastroenteritis to severe systemic infection. To explore development of a potent vaccine against Salmonella infections, the gene encoding outer membrane protein L (ompL) was inserted into the swinepox virus (SPV) genome by homologous recombination. PCR, western blot, and immunofluorescence assays were used to verify the recombinant swinepox virus rSPV-OmpL. The immune responses and protection efficacy of rSPV-OmpL were assessed in a mouse model. Forty mice were assigned to four groups, which were immunized with rSPV-OmpL, inactive Salmonella (positive control), wild-type SPV (wtSPV; negative control), or PBS (challenge control), respectively. The OmpL-specific antibody in the rSPV-OmpL-immunized group increased dramatically and continuously over time post-vaccination, and was present at a significantly higher level than in the positive control group (p < 0.05). The concentrations of IFN-γ and IL-4, which represent Th1-type and Th2-type cytokine responses, were significantly higher (p < 0.05) in the rSPV-OmpL-vaccinated group than in the other three groups. After intraperitoneal challenge with a lethal dose of Salmonella typhimurium CVCC542, eight out of ten mice in the rSPV-OmpL-vaccinated group were protected, whereas all the mice in the negative control and challenge control groups died within 3 days. Passive immune protection assays showed that hyperimmune sera against OmpL could provide mice with effective protection against challenge from S. typhimurium. The recombinant swinepox virus rSPV-OmpL might serve as a promising vaccine against Salmonella infection.

Bovine Lactoferricin Induces Intestinal Epithelial Cell Activation through Phosphorylation of FAK and Paxillin and Prevents Rotavirus Infection

  • Jeong, Ye Young;Lee, Ga Young;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.8
    • /
    • pp.1175-1182
    • /
    • 2021
  • We investigated the effect of bovine lactoferricin (Lfcin-B), a peptide derived from bovine lactoferrin, on activation of intestinal epithelial cells in IEC-6 intestinal cell, and protection against in vivo rotavirus (RV) infection. Treatment with Lfcin-B significantly enhanced the growth of IEC-6 cells and increased their capacity for attachment and spreading in culture plates. Also, Lfcin-B synergistically augmented the binding of IEC-6 cells to laminin, a component of the extracellular matrix (ECM). In the analysis of the intracellular mechanism related to Lfcin-B-induced activation of IEC-6 cells, this peptide upregulated tyrosine-dependent phosphorylation of focal adhesion kinase (FAK) and paxillin, which are intracellular proteins associated with cell adhesion, spreading, and signal transduction during cell activation. An experiment using synthetic peptides with various sequences of amino acids revealed that a sequence of 9 amino acids (FKCRRWQWR) corresponding to 17-25 of the N-terminus of Lfcin-B is responsible for the epithelial cell activation. In an in vivo experiment, treatment with Lfcin-B one day before RV infection effectively prevented RV-induced diarrhea and significantly reduced RV titers in the bowels of infected mice. These results suggest that Lfcin-B plays meaningful roles in the maintenance and repair of intestinal mucosal tissues, as well as in protecting against intestinal infection by RV. Collectively, Lfcin-B is a promising candidate with potential applications in drugs or functional foods beneficial for intestinal health and mucosal immunity.

Development and evaluation of protective capacity of Salmonella Enteritidis polyphosphate kinase-deleted and temperature-sensitive mutant (Salmonella enterica serovars Enteritidis의 온도감수성 변이주 및 폴리인산키나아제 변이주의 제작과 방어효과)

  • Kim, Kiju;Park, Soyeon;Cho, Youngjae;Kwak, Jeong-Yeon;Kang, Zheng-Wu;Kim, Eun-Hee;Choi, Hwan-Won;Won, Ho-Keun;Noh, Yun-Hee;Hahn, Tae-Wook
    • Korean Journal of Veterinary Research
    • /
    • v.53 no.4
    • /
    • pp.211-216
    • /
    • 2013
  • This study was focusing on evaluating the protection of polyphosphate kinase (ppk) deleted and/or temperature-sensitive (ts) Salmonella Enteritidis (SE) as an attenuated vaccine in chickens. We constructed SEppk, SEts and SEppk::ts mutants and screened those mutants by growth capability in vitro, protection study in mice model and antibody response in chickens. Among the mutants, SEppk::ts-3 was selected because it showed higher growth capability, good protection against highly virulent SE in mice model, and good antibody response in chickens. SEppk::ts-3 also showed good protection against highly virulent SE isolate because it decreased colonization of virulent SE challenge strain in spleen, liver and cecum compared with the non-vaccinated control. The SEppk::ts-3 mutant showed cross-protection against S. Gallinarum (SG) challenge although the its cross-protection rate was a little lower than that of SG9R, a commercial vaccine against SG infection. To use for live attenuated vaccine in chickens, it should further be characterized.

Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against experimental Neospora caninum infection

  • CHO Jung-Hwa;CHUNG Woo-Suk;SONG Kyoung-Ju;NA Byoung-Kuk;KANG Seung-Won;SONG Chul-Yong;KIM Tong-Soo
    • Parasites, Hosts and Diseases
    • /
    • v.43 no.1 s.133
    • /
    • pp.19-25
    • /
    • 2005
  • Protective efficacy of vaccination with Neospora caninum multiple recombinant antigens against N. caninum infection was evaluated in vitro and in vivo. Two major immunodominant surface antigens (NcSAG1 and NcSRS2) and two dense granule proteins (NcDG1 and NcDG2) of N. caninum tachyzoites were expressed in E. coli, respectively. An in vitro neutralization assay using polyclonal antisera raised against each recombinant antigen showed inhibitory effects on the invasion of N. caninum tachyzoites into host cells. Separate groups of gerbils were immunized with the purified recombinant proteins singly or in combinations and animals were then challenged with N. caninum. Following these experimental challenges, the protective efficacy of each vaccination was determined by assessing animal survival rate. All experimental groups showed protective effects of different degrees against experimental infection. The highest protection efficacy was observed for combined vaccination with NcSRS2 and NcDG1. Our results indicate that combined vaccination with the N. caninum recombinant antigens, NcSRS2 and NcDG1, induces the highest protective effect against N. caninum infection in vitro and in vivo.

Biological Management of Virulent Fusarium Species on Asparagus with Avirulent Fusarium Species In Vitro (비병원성(非病原性) Fusarium균(菌)을 이용(利用)한 아스파라거스의 병원성(病原性) Fusarium균(菌)의 생물적(生物的) 방제(防除))

  • Lee, Youn-Su
    • Korean Journal of Environmental Agriculture
    • /
    • v.13 no.3
    • /
    • pp.288-300
    • /
    • 1994
  • Fusarium oxysporum was isolated most frequently, followed by F. moniliforme, and F. solani from infected asparagus plants grown in the field. In pathogenicity tests both with seedlings and plantlets, F. moniliforme showed higher virulence than Fusarium oxysporum did in general. Fusarium moniliforme showed more consistent virulence on both seedlings and plantlets than F. oxysporum did. Fusarium oxysporum showed higher virulence on plantlets than on seedlings. Fusarium solani showed very weak or no sign of virulence on seedlings and plantlets, respectively, in both tests. In protection tests with plantlets, most protection of asparagus against virulent fusarial infections occurred when challenge isolates were inoculated five or seven days after inoculation of protective fusarial species. Avirulent F. oxysporum was a more effective protective agent against infection of F. moniliforme than it was against F. oxysporum. Fusarium solani was more effective against infection of F. oxysporum than it was against F. moniliforme.

  • PDF