Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.07.2018.0125

The MAP Kinase Kinase Gene AbSte7 Regulates Multiple Aspects of Alternaria brassicicola Pathogenesis  

Lu, Kai (Department of Plant Protection, Shandong Agricultural University)
Zhang, Min (Department of Plant Protection, Shandong Agricultural University)
Yang, Ran (Department of Plant Protection, Shandong Agricultural University)
Zhang, Min (Department of Plant Protection, Shandong Agricultural University)
Guo, Qinjun (Department of Plant Protection, Shandong Agricultural University)
Baek, Kwang-Hyun (Department of Biotechnology, Yeungnam University)
Xu, Houjuan (Department of Plant Protection, Shandong Agricultural University)
Publication Information
The Plant Pathology Journal / v.35, no.2, 2019 , pp. 91-99 More about this Journal
Abstract
Mitogen-activated protein kinase (MAPK) cascades in fungi are ubiquitously conserved signaling pathways that regulate stress responses, vegetative growth, pathogenicity, and many other developmental processes. Previously, we reported that the AbSte7 gene, which encodes a mitogen-activated protein kinase kinase (MAPKK) in Alternaria brassicicola, plays a central role in pathogenicity against host cabbage plants. In this research, we further characterized the role of AbSte7 in the pathogenicity of this fungus using ${\Delta}AbSte7$ mutants. Disruption of the AbSte7 gene of A. brassicicola reduced accumulation of metabolites toxic to the host plant in liquid culture media. The ${\Delta}AbSte7$ mutants could not efficiently detoxify cruciferous phytoalexin brassinin, possibly due to reduced expression of the brassinin hydrolase gene involved in detoxifying brassinin. Disruption of the AbSte7 gene also severely impaired fungal detoxification of reactive oxygen species. AbSte7 gene disruption reduced the enzymatic activity of cell walldegrading enzymes, including cellulase, ${\beta}$-glucosidase, pectin methylesterase, polymethyl-galacturonase, and polygalacturonic acid transeliminase, during host plant infection. Altogether, the data strongly suggest the MAPKK gene AbSte7 plays a pivotal role in A. brassicicola during host infection by regulating multiple steps, and thus increasing pathogenicity and inhibiting host defenses.
Keywords
AbSte7; Alternaria brassicicola; mitogen-activated protein kinase kinase (MAPKK); pathogenicity;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Apel, K. and Hirt, H. 2004. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55:373-399.   DOI
2 Pedras, M. S., Chumala, P. B., Jin, W., Islam, M. S. and Hauck, D. W. 2009. The phytopathogenic fungus Alternaria brassicicola: phytotoxin production and phytoalexin elicitation. Phytochemistry 70:394-402.   DOI
3 Pedras, M. S. C. and Yaya, E. E. 2010. Phytoalexins from Brassicaceae: news from the front. Phytochemistry 71:1191-1197.   DOI
4 Pedras, M. S. C., Yaya, E. E. and Glawischnig, E. 2011. The phytoalexins from cultivated and wild crucifers: chemistry and biology. Nat. Prod. Rep. 28:1381-1405.   DOI
5 Pedras, M. S. C. and Minic, Z. 2012. Differential protein expression in response to the phytoalexin brassinin allows the identification of molecular targets in the phytopathogenic fungus Alternaria brassicicola. Mol. Plant Pathol. 13:483-493.   DOI
6 Pedras, M. S. C., Minic, Z. and Hossain, S. 2012. Discovery of inhibitors and substrates of brassinin hydrolase: Probing selectivity with dithiocarbamate bioisosteres. Bioorg. Med. Chem. 20:225-233.   DOI
7 Pedras, M. S. C. and Park, M. R. 2015. Metabolite diversity in the plant pathogen Alternaria brassicicola: factors affecting production of brassicicolin A, depudecin, phomapyrone A and other metabolites. Mycologia 107:1138-1150.   DOI
8 Roman, E., Arana, D. M., Nombela, C., Alonso-Monge, R. and Pla, J. 2007. MAP kinase pathways as regulators of fungal virulence. Trends Microbiol. 15:181-190.   DOI
9 Rop, N. K., Kiprop, E. K. and Ochuodho, J. O. 2009. Alternaria species causing black spot disease of Brassicas in Kenya. Afri. Crop Sci. Conf. Proc. 9:635-640.
10 Brito, N., Espino, J. J. and Gonzalez, C. 2006. The endo-beta-1,4-xylanase xyn11A is required for virulence in Botrytis cinerea. Mol. Plant-Microbe Interact. 19:25-32.   DOI
11 Chen, L. H., Lin, C. H. and Chung, K. R. 2012. Roles for SKN7 response regulator in stress resistance, conidiation and virulence in the citrus pathogen Alternaria alternata. Fungal Genet. Biol. 49:802-813.   DOI
12 Chen, L. Y., Price, T. V. and Silvapulle, M. J. 2005. Dark leaf spot (alternaria brassicicola) on Chinese cabbage: spatial patterns. Aust. J. Agric. Res. 56:699-714.   DOI
13 Van Kan, J. A. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11:247-253.   DOI
14 Ruiz-Roldan, M. C., Maier, F. J. and Schäfer, W. 2001. PTK1, a mitogen-activated-protein kinase gene, is required for conidiation, appressorium formation, and pathogenicity of Pyrenophora teres on barley. Mol. Plant-Microbe Interact. 14:116-125.   DOI
15 Cho, Y. 2015. How the necrotrophic fungus Alternaria brassicicola kills plant cells remains an enigma. Eukaryot. Cell 14:335-344.   DOI
16 Cho, Y., Jang, M., Srivastava, A., Jang, J.-H., Soung, N.-K., Ko, S.-K., Kang, D.-O., Ahn, J. S. and Kim, B. Y. 2015. A pectate lyase-coding gene abundantly expressed during early stages of infection is required for full virulence in Alternaria brassicicola. PLoS One 10:e0127140.   DOI
17 Choquer, M., Fournier, E., Kunz, C., Levis, C., Pradier, J., Simon, A. and Viaud, M. 2007. Botrytis cinerea virulence factors: new insights into a necrotrophic and polyphageous pathogen. FEMS Microbiol. Lett. 277:1-10.   DOI
18 Sambrock, J. and Russel, D. 2001. Molecular cloning: A laboratory manual. 3rd ed. Cold Spring Harbor Laboratory Press, New York, USA. 2344 pp.
19 Szolar, O. H. 2007. Environmental and pharmaceutical analysis of dithiocarbamates. Anal. Chim. Acta 582:191-200.   DOI
20 Thomma, B. P. 2003. Alternaria spp.: from general saprophyte to specific parasite. Mol. Plant Pathol. 4:225-236.   DOI
21 Widmann, C., Gibson, S., Jarpe, M. B. and Johnson, G. L. 1999. Mitogen-activated protein kinase: conservation of a threekinase module from yeast to human. Physiol. Rev. 79:143-180.   DOI
22 Xu, H., Zhang, Q., Cui, W., Zhang, X., Liu, W., Zhang, L., Islam, M. N., Baek, K.-H. and Wang, Y. 2016. AbSte7, a MAPKK gene of Alternaria brassicicola, is involved in conidiation, salt/oxidative stress, and pathogenicity. J. Microbiol. Biotechnol. 26:1311-1319.   DOI
23 Xu, J. R. 2000. Map kinases in fungal pathogens. Fungal Genet. Biol. 31:137-152.   DOI
24 Xu, J. R. and Hamer, J. E. 1996. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10:2696-2706.   DOI
25 Yang, S. L. and Chung, K. R. 2012. The NADPH oxidase-mediated production of hydrogen peroxide ($H_2O_2$) and resistance to oxidative stress in the necrotrophic pathogen Alternaria alternata of citrus. Mol. Plant Pathol. 13:900-914.   DOI
26 Gustin, M. C., Albertyn, J., Alexander, M. and Davenport, K. 1998. MAP kinase pathways in the yeast Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 62:1264-1300.   DOI
27 Chung, K. R. 2012. Stress Response and Pathogenicity of the Necrotrophic Fungal Pathogen Alternaria alternata. Scientifica 2012:635431.   DOI
28 Cousin, A., Mehrabi, R., Guilleroux, M., Dufresne, M., Van Der Lee, T., Waalwijk, C., Langin, T. and Kema, G. H. 2006. The MAP kinase-encoding gene MgFus3 of the non-appressorium phytopathogen Mycosphaerella graminicola is required for penetration and in vitro pycnidia formation. Mol. Plant Pathol. 7:269-278.   DOI
29 Divon, H. H. and Fluhr, R. 2007. Nutrition acquisition strategies during fungal infection of plants. FEMS Microbiol. Lett. 266:65-74.   DOI
30 Hamel, L. P., Nicole, M. C., Duplessis, S. and Ellis, B. E. 2012. Mitogen-activated protein kinase signaling in plant-interacting fungi: distinct messages from conserved messengers. Plant Cell 24:1327-1351.   DOI
31 MacKinnon, S. L., Keifer, P. and Ayer, W. A. 1999. Components from the phytotoxic extract of Alternaria brassicicola, a black spot pathogen of canola. Phytochemistry 51:215-221.   DOI
32 Yang, Z., Bi, Y., Li, Y., Kou, Z., Bao, G., Liu, C., Wang, Y. and Wang, D. 2012. Changes of cell wall degrading enzymes in potato tuber tissue slices infected by Fusarium sulphureum. Sci. Agric. Sinica. 45:127-134 (in Chinese).
33 Hou, Z., Xue, C., Peng, Y., Katan, T., Kistler, H. C. and Xu, J. R. 2002. A mitogen-activated protein kinase gene (MGV1) in Fusarium graminearum is required for female fertility, heterokaryon formation, and plant infection. Mol Plant-Microbe Interact. 15:1119-1127.   DOI
34 Jenczmionka, N. J., Maier, F. J., Lösch, A. P. and Schäfer, W. C. 2003. Mating, conidiation and pathogenicity of Fusarium graminearum, the main causal agent of the head-blight disease of wheat, are regulated by the MAP kinase gpmk1. Curr. Genet. 43:87-95.   DOI
35 Zhao, X., Mehrabi, R. and Xu, J. R. 2007. Mitogen-activated protein kinase pathways and fungal pathogenesis. Eukaryot. Cell 6:1701-1714.   DOI
36 Joubert, A., Bataille-Simoneau, N., Campion, C., Guillemette, T., Hudhomme, P., Iacomi-Vasilescu, B., Leroy, T., Pochon, S., Poupard, P. and Simoneau, P. 2011. Cell wall integrity and high osmolarity glycerol pathways are required for adaptation of Alternaria brassicicola to cell wall stress caused by brassicaceous indolic phytoalexins. Cell Microbiol. 13:62-80.   DOI
37 Lev, S., Sharon, A., Hadar, R., Ma, H. and Horwitz, B. A. 1999. A mitogen-activated protein kinase of the corn leaf pathogen Cochliobolus heterostrophus is involved in conidiation, appressorium formation, and pathogenicity: diverse roles for mitogen-activated protein kinase homologs in foliar pathogens. Proc. Natl. Acad. Sci. U.S.A. 96:13542-13547.   DOI
38 Lin, C. H., Yang, S. L. and Chung, K. R. 2009. The YAP1 homolog-mediated oxidative stress tolerance is crucial for pathogenicity of the necrotrophic fungus Alternaria alternata in citrus. Mol. Plant-Microbe Interact. 22:942-952.   DOI
39 Lin, C. H., Yang, S. L., Wang, N. Y. and Chung, K. R. 2010. The FUS3 MAPK signaling pathway of the citrus pathogen Alternaria alternata functions independently or cooperatively with the fungal redox-responsive AP1 regulator for diverse developmental, physiological and pathogenic processes. Fungal Genet. Biol. 47:381-391.   DOI
40 Lin, C. H., Yang, S. L. and Chung, K. R. 2011. Cellular responses required for oxidative stress tolerance, colonization, and lesion formation by the necrotrophic fungus Alternaria alternata in citrus. Curr. Microbiol. 62:807-815.   DOI
41 Molina, L. and Kahmann, R. 2007. An Ustilago maydis gene involved in $H_2O_2$ detoxification is required for virulence. Plant Cell 19:2293-2309.   DOI
42 Otani, H., Kohnobe, A., Kodama, M. and Kohmoto, K. 1998. Involvement of host factors in the production of a protein host-specific toxin by Alternaria brassicicola. In: Molecular Genetics of Host-Specific Toxins in Plant Disease, eds. by K. Kohmoto and O. C. Yoder, pp. 63-69. Proceedings of the 3rd Tottori International Symposium on Host-Specific Toxins, Daisen, Tottori, Japan.
43 Moriwaki, A., Kihara, J., Mori, C. and Arase, S. 2007. A MAP kinase gene, BMK1, is required for conidiation and pathogenicity in the rice leaf spot pathogen Bipolaris oryzae. Microbiol. Res. 162:108-114.   DOI
44 Nishimura, S. and Kohmoto, K. 1983. Host-specific toxins and chemical structures from alternaria species. Annu. Rev. Phytopathol. 21: 87-116.   DOI
45 Oka, K., Akamatsu, H., Kodama, M., Nakajima, H., Kawada, T. and Otani, H. 2005. Host-specific AB-toxin production by germinating spores of Alternaria brassicicola is induced by a host-derived oligosaccharide. Physiol. Mol. Plant Pathol. 66:12-19.   DOI
46 Pearson, G., Robinson, F., Beers Gibson, T., Xu, B., Karandikar, M., Berman, K. and Cobb, M. H. 2001. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr. Rev. 22:153-183.   DOI