• Title/Summary/Keyword: Projection Equation

Search Result 105, Processing Time 0.025 seconds

Qantum Transition properties of Si in Electron Deformation Potential Phonon Interacting Qusi Two Dimensional System (준 2차원 시스템에서 전자 변위 포텐셜 상호 작용에 의한 Si의 양자 전이 특성)

  • Joo, Seok-Min;Cho, Hyun-Chul;Lee, Su-Ho
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.502-507
    • /
    • 2019
  • We investigated theoretically the quantum optical transition properties of qusi 2-Dinensinal Landau splitting system, in Si. We apply the Quantum Transport theory (QTR) to the system in the confinement of electrons by square well confinement potential. We use the projected Liouville equation method with Equilibrium Average Projection Scheme (EAPS). In order to analyze the quantum transition, we compare the temperature and the magnetic field dependencies of the QTLW and the QTLS on two transition processes, namely, the phonon emission transition process and the phonon absorption transition process. Through the analysis of this work, we found the increasing properties of QTLW and QTLS of Si with the temperature and the magnetic fields. We also found the dominant scattering processes are the phonon emission transition process.

Local Parameterization of Polygonal Models Using Projection Level Set (투영 등위 집합을 이용한 다면체 모델의 부분 매개 변수화)

  • Lee, Yeon-Joo;Cha, Deuk-Hyun;Chang, Byung-Joon;Ihm, In-Sung
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.12
    • /
    • pp.641-655
    • /
    • 2007
  • Parameterization has been one of very important research subjects in several application areas including computer graphics. In the parameterization research, the problem of mapping 3D polygonal model to 2D plane has been studied frequently, but the previous methods often fail to handle complicated shapes of polygonal surfaces effectively as well as entail distortion between the 3D and 2D spaces. Several attempts have been made especially to reduce such distortion, but they often suffer from the problem when an arbitrary rectangular surface region on 3D model is locally parameterized. In this paper, we propose a new local parameterization scheme based on the projection level set method. This technique generates a series of equi-distanced curves on the surface region of interest, which are then used to generate effective local parameterization information. In this paper, we explain the new technique in detail and show its effectiveness by demonstrating experimental results.

Future Demand and Supply of Physicians for Korean Medicine (한의사인력의 중장기 수급 추계 연구)

  • Kim, Jin-Hyun;Bae, Hyun-Ji;Lee, Sun-Dong
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.17 no.1
    • /
    • pp.149-162
    • /
    • 2013
  • Objectives : This study was conducted to estimate the future demand and supply of physicians for korean medicine from 2016 year to 2026 year in order to make an adequate manpower policy in a way of keeping a balance between demand and supply. Methods : Baseline projection method and trend analysis(a polynomial log power equation model) were used in the estimation of future supply and demand respectively. We used data about the amount of oriental doctors from Ministry of Health and Welfare Statistics Yearbook and the treatment days from HIRA Statistics Yearbook. Results : It was projected that the total number of physician of Korean medicine will be 25,178 registered and 18,967 available in clinical setting. According to polynomial equation model which explained the trend of demand and had the highest score of $R^2$ among the equation models, 3,800~5,600 physician in Korean medicine will be oversupplied in 2016 year, 9,000~10,700 physicians in 2021 year and 15,700~17,000 persons in 2026 year depends on annual working days which is 265days, 255days or 239days. Log equation model also showed that overall excess supply of physician manpower in Korean medicine. Conclusions : Alternative manpower policies for Korean medicine doctors should be implemented in a way of both dwindling supplies and growing demand in Korean medical service in terms of Korean medical services utilization and improving physician's productivity.

A Multiresolution Image Segmentation Method using Stabilized Inverse Diffusion Equation (안정화된 역 확산 방정식을 사용한 다중해상도 영상 분할 기법)

  • Lee Woong-Hee;Kim Tae-Hee;Jeong Dong-Seok
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.41 no.1
    • /
    • pp.38-46
    • /
    • 2004
  • Image segmentation is the task which partitions the image into meaningful regions and considered to be one of the most important steps in computer vision and image processing. Image segmentation is also widely used in object-based video compression such as MPEG-4 to extract out the object regions from the given frame. Watershed algorithm is frequently used to obtain the more accurate region boundaries. But, it is well known that the watershed algorithm is extremely sensitive to gradient noise and usually results in oversegmentation. To solve such a problem, we propose an image segmentation method which is robust to noise by using stabilized inverse diffusion equation (SIDE) and is more efficient in segmentation by employing multiresolution approach. In this paper, we apply both the region projection method using labels of adjacent regions and the region merging method based on region adjacency graph (RAG). Experimental results on noisy image show that the oversegmenation is reduced and segmentation efficiency is increased.

Adaptive Discrete Time Sliding-Mode Tracking Control of a Proportional Control Valve-Hydraulic System in the presence of friction (비선형 마찰특성을 고려한 비례제어밸브·유압실린더계의 적응 이산시간 슬라이딩모드 추적제어)

  • Yu, Hwan-Shin;Park, Hyung-Bae
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.5
    • /
    • pp.756-762
    • /
    • 2009
  • As nonlinear friction, stick-slip friction in hydraulic actuators are a problem for accuracy and repeatability. Therefore friction compensation has been approached through various control algorithms. A Adaptive discrete time sliding mode tracking controller has been applied in order to compensate the nonlinear friction characteristics in a hydraulic Actuator. Based on the diophantine equation, a new discrete time sliding function is defined and utilized for the control law which includes a friction and modeling error. Robustness is increased by using both a projection algorithm and a sliding function-based nonlinear feedforward. From the results of simulation and experiment good tracking performance is achieved.

  • PDF

The Meshfree Method Based on the Least-Squares Formulation for Elasto-Plasticity (탄소성 최소 제곱 수식화와 이를 이용한 무요소법)

  • Youn Sung-Kie;Kwon Kie-Chan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.6 s.237
    • /
    • pp.860-875
    • /
    • 2005
  • A new meshfree method for the analysis of elasto-plastic deformations is presented. The method is based on the proposed first-order least-squares formulation, to which the moving least-squares approximation is applied. The least-squares formulation for the classical elasto-plasticity and its extension to an incrementally objective formulation for finite deformations are proposed. In the formulation, the equilibrium equation and flow rule are enforced in least-squares sense, while the hardening law and loading/unloading condition are enforced exactly at each integration point. The closest point projection method for the integration of rate-form constitutive equation is inherently involved in the formulation, and thus the radial-return mapping algorithm is not performed explicitly. Also the penalty schemes for the enforcement of the boundary and frictional contact conditions are devised. The main benefit of the proposed method is that any structure of cells is not used during the whole process of analysis. Through some numerical examples of metal forming processes, the validity and effectiveness of the method are presented.

An enhanced incompressible SPH method for simulation of fluid flow interactions with saturated/unsaturated porous media of variable porosity

  • Shimizu, Yuma;Khayyer, Abbas;Gotoh, Hitoshi
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.63-86
    • /
    • 2022
  • A refined projection-based purely Lagrangian meshfree method is presented towards reliable numerical analysis of fluid flow interactions with saturated/unsaturated porous media of uniform/spatially-varying porosities. The governing equations are reformulated on the basis of two-phase mixture theory with incorporation of volume fraction. These principal equations of mixture are discretized in the context of Incompressible SPH (Smoothed Particle Hydrodynamics) method. Associated with the consideration of governing equations of mixture, a new term arises in the source term of PPE (Poisson Pressure Equation), resulting in modified source term. The linear and nonlinear force terms are included in momentum equation to represent the resistance from porous media. Volume increase of fluid particles are taken into consideration on account of the presence of porous media, and hence multi-resolution ISPH framework is also incorporated. The stability and accuracy of the proposed method are thoroughly examined by reproducing several numerical examples including the interactions between fluid flow and saturated/unsaturated porous media of uniform/spatially-varying porosities. The method shows continuous pressure field, smooth variations of particle volumes and regular distributions of particles at the interface between fluid and porous media.

The magnetic properties of optical Quantum transitions of electron-piezoelectric potential interacting systems in CdS and ZnO

  • Lee, Su Ho
    • Journal of IKEEE
    • /
    • v.22 no.1
    • /
    • pp.61-67
    • /
    • 2018
  • We investigated theoretically the magnetic field dependence of the quantum optical transition of qusi 2-Dimensional Landau splitting system, in CdS and ZnO. In this study, we investigate electron confinement by square well confinement potential in magnetic field system using quantum transport theory(QTR). In this study, theoretical formulas for numerical analysis are derived using Liouville equation method and Equilibrium Average Projection Scheme (EAPS). In this study, the absorption power, P (B), and the Quantum Transition Line Widths (QTLWS) of the magnetic field in CdS and ZnO can be deduced from the numerical analysis of the theoretical equations, and the optical quantum transition line shape (QTLS) is found to increase. We also found that QTLW, ${\gamma}(B)_{total}$ of CdS < ${\gamma}(B)_{total}$ of ZnO in the magnetic field region B<25 Tesla.

A PRIORI ERROR ESTIMATES AND SUPERCONVERGENCE PROPERTY OF VARIATIONAL DISCRETIZATION FOR NONLINEAR PARABOLIC OPTIMAL CONTROL PROBLEMS

  • Tang, Yuelong;Hua, Yuchun
    • Journal of applied mathematics & informatics
    • /
    • v.31 no.3_4
    • /
    • pp.479-490
    • /
    • 2013
  • In this paper, we investigate a priori error estimates and superconvergence of varitional discretization for nonlinear parabolic optimal control problems with control constraints. The time discretization is based on the backward Euler method. The state and the adjoint state are approximated by piecewise linear functions and the control is not directly discretized. We derive a priori error estimates for the control and superconvergence between the numerical solution and elliptic projection for the state and the adjoint state and present a numerical example for illustrating our theoretical results.

APPROXIMATION OF SOLUTIONS FOR GENERALIZED WIENER-HOPF EQUATIONS AND GENERALIZED VARIATIONAL INEQUALITIES

  • Gu, Guanghui;Su, Yongfu
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.465-472
    • /
    • 2010
  • The purpose of this article is to introduce a new generalized class of the Wiener-Hopf equations and a new generalized class of the variational inequalities. Using the projection technique, we show that the generalized Wiener-Hopf equations are equivalent to the generalized variational inequalities. We use this alternative equivalence to suggest and analyze an iterative scheme for finding the solution of the generalized Wiener-Hopf equations and the solution of the generalized variational inequalities. The results presented in this paper may be viewed as significant and improvement of the previously known results. In special, our results improve and extend the resent results of M.A. Noor and Z.Y.Huang[M.A. Noor and Z.Y.Huang, Wiener-Hopf equation technique for variational inequalities and nonexpansive mappings, Appl. Math. Comput.(2007), doi:10.1016/j.amc.2007.02.117].