• Title/Summary/Keyword: Projectile

Search Result 399, Processing Time 0.02 seconds

A Study of Impact Reduction Characteristics of Hat-Shaped Stiffened Panel Under Hypervelocity Impact (초고속 충돌을 받는 모자형 보강 패널의 충격 저감 특성에 관한 연구)

  • Yang, Tae-Ho;Lee, Young-Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.7
    • /
    • pp.929-935
    • /
    • 2013
  • This paper presents the results of sizing optimization of ahat-shaped stiffener on a rectangular stiffened panel. The stiffened panel is subjected to impact loading by a projectile with a velocity of 1500-2500 m/s. To determine the size of the hat-shaped stiffener, sizing optimization was performed. The sizing optimization consists of three functions: objective, constraint, and design functions. The objective function is used to maximize the fundamental frequency of the stiffened panel. The constraint function is that the stiffener volume is less than 10% of the plate volume. The design function is the dimensions of the hat-shaped stiffener. By using the stiffened panel with the optimized hat-shaped stiffener, a hypervelocity impact was simulated, and the velocity and kinetic energy on the optimized stiffener was obtained. To evaluate the impact reduction on the stiffened panel, the velocity and kinetic energy of the projectile was normalized and compared.

A Study on Impact Testing of a Rolling-stock Windscreen (철도차량 전면창유리 충격시험에 관한 연구)

  • Jeon, Hong Kyu;Park, Chan Kyoung;Seo, Jung Won;Jeon, Chang Sung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.5
    • /
    • pp.365-371
    • /
    • 2013
  • This study describes impact test methods for a rolling-stock windscreen executed in Korea and Europe. Air-pressurized impact test equipment for the front windscreens of high speed trains was designed and manufactured. The equipment is capable of launching a projectile at 500km/h, in accordance with EN 15152's impact test method. Calibration of the test equipment was conducted to find an equation relating air pressure and projectile velocity. Specimens ($1000mm{\times}700mm$) having similar specifications with the front windscreens in metro and conventional trains were used to conduct impact tests with this equipment to research the impact characteristics of the screens according to the impact velocity.

Flow Visualization and Unstructured Grid Computation of Flow over a High-Speed Projectile (고속탄자 유동의 가시화 실험 및 비정렬격자 계산)

  • 이상길;최서원;강준구;임홍규;백영호;김두연;강호철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.12-20
    • /
    • 1998
  • Exter ballistics of a typical high-speed projectile is studied through a flow-visualization experiment and an unstructured grid Navier-Srokes computation. Experiment produced a schlieren photograph that adequately shows the characteristic features of this complex flow, namely two kinds of oblique cone shocks and turbulent wake developing into the downstream. A hybrid scheme of finite volume-element method is used to simulate the compressible Reynolds-Averaged Navier-Stok- es solution on unstructured grids. Osher's approximate Riemann solver is used to discretize the cinvection term. Higher-order spatial accuracy is obtained by MUSCL extension and van Albada ty- pe flux limiter is used to stabilize the numerical oscillation near the solution discontinuity. Accurate Gakerkin method is used to discretize the viscous term. Explict fourth-order Runge-Kutta method is used for the time-stepping, which simplifies the application of MUSCL extension. A two-layer k-$\varepsilon$ turbulence model is used to simulate the turbulent wakes accurately. Axisymmetric folw and two-dimensional flow with an angle of attack have been computed. Grid-dependency is also checked by carrying out the computation with doubled meshes. 2-D calculation shows that effect of angle of attack on the flow field is negligible. Axi-symmetric results of the computation agrees well with the flow visualization. Primary oblique shock is represented within 2-3 meshes in numerical results, and the varicose mode of the vortex shedding is clearly captured in the turbulent wake region.

  • PDF

Application of Vector Scalar Product to Solve the Kinematic Equations in the Earth's Gravitational Field (지구 중력장 내에서 성립하는 운동 상태 방정식의 해를 구하기 위한 벡터의 스칼라 프로덕트 응용)

  • Um, Kee-Hong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.6
    • /
    • pp.217-222
    • /
    • 2017
  • Any object located in the earth's gravitational field experiences a force in the direction of the center of the earth. In order to describe the motion of objects in the field, the solutions to a system of simultaneous vector kinematic equations need to be obtained. In the analysis of freely-falling objects, the reference direction +y is usually defined to be the downward direction. In the analysis of the motion of objects thrown upward, the reference direction +y is usually defined to be the upward direction. In the analysis of the motion of objects thrown downward, the reference direction +y is usually defined to be the downward direction. In this paper, we show that the choice of reference axis in either upward or direction gives the same results by adopting a scalar product of two vectors in solving the vector kinematic equations. It is rare to find other examples of using a scalar product of two vectors in solving vector kinematic equations describing the motion of objects. An application of this study is that we can arbitrarily choose the reference direction for objects moving in a horizontal direction, including projectile motions.

Development of Plant Regeneration and Genetic Transformation System from Shoot Apices of Sorghum bicolor (L.) Moench

  • Syamala, D.;Devi, Prathibha
    • Journal of Plant Biotechnology
    • /
    • v.6 no.2
    • /
    • pp.77-85
    • /
    • 2004
  • Development of efficient plant regeneration and genetic transformation protocols (using the Particle Inflow micro-projectile Gun and the shoot-tips as target tissue) of Sorghum bicolor (L.) Moench in terms of expression of the reporter gene, $\beta$-glucuronidase(uidA) is reported here. Two Indian cultivars of sorghum were used in the study, viz. M-35-1 and CSV-15. Plant regeneration was achieved from one-week-old seedling shoot-tip explants via multiple-shoot-clumps and also somatic embryos. The multiple-shoot-clumps were produced on MS medium containing BA (0.5, 1.0 or 2.0 mg/$L^{-1}$), with biweekly subculture. Somatic embryos were directly produced on the enlarged dome shaped expansive structures that developed from shoot-tip explants (without any callus formation) when cultured on MS medium supplemented both with BA (0.5, 1.0 or 2.0 mg/$L^{-1}$) and 2,4-D (0.5 mg/$L^{-1}$). Whereas each multiple-shoot-clump was capable of regenerating more than 80 shoots via an intensive differentiation of both axillary and adventitious shoot buds, the somatic embryos were capable of 90% germination, plant conversion and regeneration. The regenerated shoots could be efficiently rooted on MS medium containing 1.0mg/$L^{-1}$ IBA and successfully transplanted to the glasshouse and grown to maturity with a survival rate of 92%. The plant regeneration efficiency of both the genotypes were similar. After the micro-projectile bombardment, expression of uidA gene was determined by scoring blue transformed cell sectors in the bombarded tissue by an in situ enzyme assay. The optimal conditions comprising a helium pressure of 2200 K Pa, the target distance of 11 cm with helium inlet fully opened and the use of osmoticum have been defined to aid our future strategies of genetic engineering in sorghum with genes for tolerance to biotic and abiotic stresses.

Evaluation of Local Damage of SC Wall using Local Collision Simulation (국부충돌해석에 의한 SC벽체의 국부손상 평가)

  • Woo, Dong In;Chung, Chul Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.2
    • /
    • pp.265-274
    • /
    • 2015
  • The structural safety of nuclear power plant against impact from aircraft crash has been performed so far in two viewpoints such as local behavior and global behavior, and the local behavior has been evaluated using local damage evaluation formulas suggested based on the results of experimental data of RC (Reinforcement Concrete) wall. However, few data have been collected from recent research to evaluate the local behavior and damage of SC (Steel plate reinforced Concrete) wall, which is recently applied to the newly designed nuclear power plant. In this study, local damages of SC wall and RC wall against an idealized aircraft engine projectile impact are evaluated through FE simulation analyses with various wall thicknesses and steel ratio. Through analysis of local collision simulation results of SC and RC wall, the penetration depth of SC wall and RC wall are compared.

Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates (복합판재의 파단 변형률 불확실성을 고려한 탄 관통 잔류속도에 대한 시험 및 수치해석)

  • Cha, Myungseok;Lee, Minhyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.3
    • /
    • pp.281-288
    • /
    • 2016
  • The ballistic performance data of composite materials is distributed due to material inhomogeneity. In this paper, the uncertainty in residual velocity is obtained experimentally, and a method of predicting it is established numerically for the high-speed impact of a bullet into laminated composites. First, the failure strain distribution was obtained by conducting a tensile test using 10 specimens. Next, a ballistic impact test was carried out for the impact of a fragment-simulating projectile (FSP) bullet with 4ply ([0/90]s) and 8ply ([0/90/0/90]s) glass fiber reinforced plastic (GFRP) plates. Eighteen shots were made at the same impact velocity and the residual velocities were obtained. Finally, simulations were conducted to predict the residual velocities by using the failure strain distributions that were obtained from the tensile test. For this simulation, two impact velocities were chosen at 411.7m/s (4ply) and 592.5m/s (8ply). The simulation results show that the predicted residual velocities are in close agreement with test results. Additionally, the modeling of a composite plate with layered solid elements requires less calculation time than modeling with solid elements.

Numerical Simulation of Steel/Kevlar Hybrid Composite Helmet Subjected to Ballistic Impact (탄도 충격을 받는 Steel/Kevlar 혼합복합재 헬멧 수치 시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin;Jin, Hai Lan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1569-1575
    • /
    • 2012
  • In this study, ballistic impact effects on a helmet were investigated using the AUTODYN-3D program. Two types of materials were used for manufacturing the helmet: single Kevlar and Steel/Kevlar hybrid composites. Furthermore, two types of bullets were used in the simulation: steel spherical and 7.62 mm full-jacketed. In the simulation, the shape deformation of the projectile and internal energy were calculated. From the results, impact velocities above 655 m/s and 845 m/s were required to perforate the Steel/Kevlar helmet with steel spherical and 7.62 mm full-jacketed bullets, respectively. The results show that there was a large difference between the ballistic resistance of the Kevlar and Steel/Kevlar helmets. For the simulation on an NIJ-STD-0106.01 Type II helmet, a 7.62 mm fulljacketed bullet with a striking velocity of 358 m/s was used. Simulation results show that the Steel/Kevlar helmet could resist a 7.62 mm full-jacketed bullet traveling at 358 m/s.

Numerical Simulation of Failure Mechanism of PELE Perforating Thin Target Plates (얇은 표적체판에 천공하는 PELE 의 파괴 메커니즘 수치시뮬레이션)

  • Jo, Jong Hyun;Lee, Young Shin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.12
    • /
    • pp.1577-1583
    • /
    • 2012
  • Penetrator with enhanced lateral effect (PELE) is a novel projectile that does not require dynamite and a fuse. It comprises a high-density jacket that is closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE using AUTODYN-3D code, the calculation models of the projectile body and the bullet target were developed and the process of penetrating an aluminum-2024 alloy target using PELE was simulated. The scattering characteristics after PELE penetrated the aluminum-2024 alloy target were studied for different filling materials. The explicit finite element analysis of PELE fragmentation was implemented with the stochastic failure criterion in AUTODYN-3D code. As the filling expanded, the fragments gained velocity and dispersed laterally, increasing the damage area considerably. The number and shape of PELE fragments differed depending on the impact pressure of the filling that fragmented during the penetration and lateral dispersion processes.

An experimental study on the ballistic performance of FRP-steel plates completely penetrated by a hemispherical-nosed projectile

  • Chen, Changhai;Zhu, Xi;Hou, Hailiang;Zhang, Lijun;Shen, Xiaole;Tang, Ting
    • Steel and Composite Structures
    • /
    • v.16 no.3
    • /
    • pp.269-288
    • /
    • 2014
  • Experiments were carried out to investigate the ballistic performance of fiber reinforced plastic(FRP)-steel plates completely penetrated by hemispherical-nosed projectiles at sub-ordnance velocities greater than their ballistic limits. The FRP-steel plate consists of a front FRP laminate and a steel backing plate. Failure mechanisms and impact energy absorptions of FRP-steel plates were analyzed and compared with FRP laminates and single steel plates. The effects of relative thickness, manufacturing method and fabric type of front composite armors as well as the joining style between front composite armors and steel backing plates on the total perforation resistance of FRP-steel plates were explored. It is found that in the case of FRP-steel plates completely penetrated by hemispherical-nosed projectiles at low velocities, the failure modes of front composite armors are slightly changed while for steel backing plates, the dominate failure modes are greatly changed due to the influence of front composite armors. The relative thickness and fabric type of front composite armors as well as the joining style of FRP-steel plates have large effects whereas the manufacturing method of front composite armors has slight effect on the total perforation resistance of FRP-steel plates.