DOI QR코드

DOI QR Code

Numerical Simulation of Steel/Kevlar Hybrid Composite Helmet Subjected to Ballistic Impact

탄도 충격을 받는 Steel/Kevlar 혼합복합재 헬멧 수치 시뮬레이션

  • Jo, Jong Hyun (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Lee, Young Shin (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Jin, Hai Lan (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.)
  • 조종현 (충남대학교 기계설계공학과) ;
  • 이영신 (충남대학교 기계설계공학과) ;
  • 김해란 (충남대학교 기계설계공학과)
  • Received : 2012.05.17
  • Accepted : 2012.07.11
  • Published : 2012.12.01

Abstract

In this study, ballistic impact effects on a helmet were investigated using the AUTODYN-3D program. Two types of materials were used for manufacturing the helmet: single Kevlar and Steel/Kevlar hybrid composites. Furthermore, two types of bullets were used in the simulation: steel spherical and 7.62 mm full-jacketed. In the simulation, the shape deformation of the projectile and internal energy were calculated. From the results, impact velocities above 655 m/s and 845 m/s were required to perforate the Steel/Kevlar helmet with steel spherical and 7.62 mm full-jacketed bullets, respectively. The results show that there was a large difference between the ballistic resistance of the Kevlar and Steel/Kevlar helmets. For the simulation on an NIJ-STD-0106.01 Type II helmet, a 7.62 mm fulljacketed bullet with a striking velocity of 358 m/s was used. Simulation results show that the Steel/Kevlar helmet could resist a 7.62 mm full-jacketed bullet traveling at 358 m/s.

본 논문은 AUTODYN-3D 프로그램을 이용한 방탄 헬멧의 탄도충격에 관한 연구를 하였다. 두 가지 유형의 재료가 방탄 헬멧에 사용되었다. Kevlar 및 Steel/Kevlar 혼합복합재 이다. 강구와 7.62 mm 금속피복탄이 시뮬레이션에서 사용되었다. 시뮬레이션에서 발사체의 변형된 형상과 내부에너지가 계산되었다. 결과는 Steel/Kevlar 헬멧을 관통하기 위해 요구되는 충격속도는 강구와 7.62 mm 금속피복탄에 따라 각각 655 m/s 와 845 m/s 이상이다. 결과로부터 Kevlar 와 Steel/Kevlar 헬멧 사이의 탄도 저항에 큰 차이를 볼 수 있었다. NIJ-STD-0106.01 Type II헬멧에 대한 시뮬레이션으로 충격 속도 358 m/s 의 7.62 mm 금속피복탄이 사용되었다. 시뮬레이션 결과는 Steel/Kevlar 헬멧이 충격 속도 358 m/s 의 7.62 mm 금속피복탄을 방어할 수 있는 것으로 나타났다.

Keywords

References

  1. Kim, S. H., Kim, G. I. and Cho, M. H., 2009, "Experimental Test and Numerical Simulation of Protection Ballistic Limit Velocity on Magnesium Alloy Plates," Proc. of Spring Conference of the KSME, pp. 491-495.
  2. Lee, Y.S., Kim, D.J., Kang, K.H. and Oh, J.S., 1998, "A Study of the Impact Pulse Analysis with Various Shapes and Materials of Impactor," Trans. of KSME(A), Vol.22, No.1, pp.52-63.
  3. Lee, Y.S., Oh, J.S., Kang, K.H. and Choi, B.D., 1998, "A Study of Penetration History of Conically-Nosed Bullet on Layered Targets," Trans. of KSME(A), Vol.22, No.6, pp.1022-1035.
  4. Lee, Y.S., Kim, D.J., Kang, K.H. and Oh, J.S., 1998, "A Study of the Penetration Characteristics of the Rigid Impactor into the Lead Target," Journal of the Computational Structural Engineering Institute, Vol.11, No.4, pp.147-154.
  5. Rosenberg, Z., Surujon, Z., Yeshurun, Y., Ashuach, Y. and Dekel, E., 2005, "Ricochet of 0.3" AP Projectile from Inclined Polymeric Plates," International Journal of Impact Engineering, Vol.31, No.3, pp.221-233. https://doi.org/10.1016/j.ijimpeng.2003.12.008
  6. Dorogoy, A., Rittel, D. and Brill, A., 2010, "A Study of Inclined Impact in Polymethylmethacrylate Plates," International Journal of Impact Engineering, Vol.37, No.3, pp.285-294. https://doi.org/10.1016/j.ijimpeng.2009.06.013
  7. Tham, C. Y., Tan, V. B. C. and Lee, H. P., 2008, "Ballistic Impact of a KEVLAR Helmet : Experiment and Simulation," International Journal of Impact Engineering, Vol.35, pp. 304-318. https://doi.org/10.1016/j.ijimpeng.2007.03.008
  8. Hiermaier, S. J., Riedel, W., Clegg, R. A. and Hayhurst, C. J., 1999, "Advanced Material Model for Hypervelocity Impact Simulations," ESA Contract No. 12400/97/NL/PA(SC) Final Report.
  9. WWW.ANSYS.COM, 2011, "ANSYS / AUTODYN- 3D," 12.1 User's Manual, Material Models Chapter.
  10. Magnus, A. and Svein, K., 2007, "Evaluation of Head Response to Ballistic Helmet Impacts Using the Finite Element Method," International Journal of Impact Engineering, Vol.34, pp. 596-608. https://doi.org/10.1016/j.ijimpeng.2005.08.001

Cited by

  1. Penetration Characteristic of Cylindrical and Cubic Tungsten Penetrator due to Geometrical Shape Ratio vol.18, pp.5, 2013, https://doi.org/10.7315/CADCAM.2013.367
  2. Analysis of Hypervelocity Impact Fracture Behavior of Multiple Bumper Steel Plates vol.37, pp.6, 2013, https://doi.org/10.3795/KSME-A.2013.37.6.761
  3. Study of Hypervelocity Penetration Characteristics of Segmented Tungsten Penetrator vol.37, pp.8, 2013, https://doi.org/10.3795/KSME-A.2013.37.8.953
  4. A Forensic Engineering Study on Evaluation of Explosive Pressure and Velocity for LNG Explosion Accident using AUTODYN vol.30, pp.4, 2015, https://doi.org/10.14346/JKOSOS.2015.30.4.56
  5. Collision Analysis of STF Impregnated Kevlar Fabric Using the 3D-Shell Element vol.29, pp.1, 2016, https://doi.org/10.7234/composres.2016.29.1.024
  6. Test and Numerical Analysis for Penetration Residual Velocity of Bullet Considering Failure Strain Uncertainty of Composite Plates vol.40, pp.3, 2016, https://doi.org/10.3795/KSME-A.2016.40.3.281