DOI QR코드

DOI QR Code

Numerical Simulation of Failure Mechanism of PELE Perforating Thin Target Plates

얇은 표적체판에 천공하는 PELE 의 파괴 메커니즘 수치시뮬레이션

  • Jo, Jong Hyun (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.) ;
  • Lee, Young Shin (Dept. of Mechanical Design Engineering, Chungnam Nat'l Univ.)
  • 조종현 (충남대학교 기계설계공학과) ;
  • 이영신 (충남대학교 기계설계공학과)
  • Received : 2012.05.17
  • Accepted : 2012.08.20
  • Published : 2012.12.01

Abstract

Penetrator with enhanced lateral effect (PELE) is a novel projectile that does not require dynamite and a fuse. It comprises a high-density jacket that is closed at its rear end and filled with a low-density filling material. To study the explosion characteristics of PELE using AUTODYN-3D code, the calculation models of the projectile body and the bullet target were developed and the process of penetrating an aluminum-2024 alloy target using PELE was simulated. The scattering characteristics after PELE penetrated the aluminum-2024 alloy target were studied for different filling materials. The explicit finite element analysis of PELE fragmentation was implemented with the stochastic failure criterion in AUTODYN-3D code. As the filling expanded, the fragments gained velocity and dispersed laterally, increasing the damage area considerably. The number and shape of PELE fragments differed depending on the impact pressure of the filling that fragmented during the penetration and lateral dispersion processes.

횡방향 관통 효율 강화 탄체(PELE)는 기폭장치가 없는 새로운 개념의 발사체이다. PELE 는 배면이 닫혀있는 고밀도 피복과 저밀도 충전재로 구성되어있다. PELE 의 폭발 특성을 연구하기 위해 AUTODYN-3D code 를 이용하여 발사체와 표적체의 모델을 구축하였다. PELE 의 의해 알루미늄-2024 합금 표적체를 천공하는 과정을 시뮬레이션으로 구현하였으며 또한 다양한 내부 충전재에 의해 분산되는 표적체의 파편 특성도 연구하였다. PELE 파편의 유한요소해석은 AUTODYN-3D code 의 추계학적 파괴기준을 사용하여 구현되었다. 내부 충전재의 팽창으로 인해 파편은 속도를 얻으며 횡방향으로 분산된다. 따라서 손상영역의 범위가 증강한다. 관통 및 횡방향 분산 과정에서 생성되는 파편은 내부 충전재의 충격 압력에 따라 그 양과 형태가 다른 것으로 나타났다.

Keywords

References

  1. Paulus, G., Chanteret, P. and Wollmann, E., 2004,"PELE:A New Penetrator Concept for Generating Lateral Effects," Proccedings of the 21st International Symposium on Ballistics, Vol.1, pp. 104-110.
  2. Paulus, G. and Schirm, V., 2006, "Impact Behavior of PELE Projectiles Perforating Thin Target Plates," International Journal of Impact Engineering, Vol.33, pp. 566-579. https://doi.org/10.1016/j.ijimpeng.2006.09.026
  3. Jian-wei, J., Mou, Z., Jian-bing, M. and Shu-you, W., 2011, "Study on Fragmentation of PELE Against Thin Targets," Journal of Beijing Institute of Technology, Vol.20, No.2, pp.168-172.
  4. Recht, R. F. and Ipson, T. W., 1963, "Ballistic Perforation Dynamics," Trans of ASME, Journal of Applied Mechanics, Vol.30, No 3, pp. 384-390. https://doi.org/10.1115/1.3636566
  5. Lee, S., Kim, Y., Koo, M., Gimm, H. and Yoo, H., 2010, "Hilbert-Huang Transform(HHT) Transient Analysis of Composite Panel Undergoing High- Velocity Impact, " Journal of Mechanical Science and Technology, Vol.24(12), pp. 2395-2400. https://doi.org/10.1007/s12206-010-0912-4
  6. Kim, Y., Yoo, J. and Lee, M., 2012, "Optimal Design of Spaced Plates Under Hypervelocity Impact," Journal of Mechanical Science and Technology, Vol.26(5), pp. 1567-1575. https://doi.org/10.1007/s12206-012-0327-5
  7. Paulus, G., 2004, "Geschoss mit Erhohter Lateralwirkung (PELE). Eine Theorie der Lateralwirkung Beim Durchschlag Einer Dunnen Platte," ISL— Report R 115/2004.
  8. Zukas J.A., Editor. 1990, High Velocity Impact Dynamics. New York: Wiley.
  9. WWW1.ANSYS.COM, 2011, "ANSYS/AUTODYN- 3D,"12.1 User's Manual, Material Models Chapter.

Cited by

  1. Analysis of Hypervelocity Impact Fracture Behavior of Multiple Bumper Steel Plates vol.37, pp.6, 2013, https://doi.org/10.3795/KSME-A.2013.37.6.761
  2. Study of Hypervelocity Penetration Characteristics of Segmented Tungsten Penetrator vol.37, pp.8, 2013, https://doi.org/10.3795/KSME-A.2013.37.8.953
  3. A Forensic Engineering Study on Evaluation of Explosive Pressure and Velocity for LNG Explosion Accident using AUTODYN vol.30, pp.4, 2015, https://doi.org/10.14346/JKOSOS.2015.30.4.56