• 제목/요약/키워드: Programmed necrosis

검색결과 36건 처리시간 0.024초

Harnessing of Programmed Necrosis for Fighting against Cancers

  • Cho, Young Sik;Park, Seung Yeon
    • Biomolecules & Therapeutics
    • /
    • 제22권3호
    • /
    • pp.167-175
    • /
    • 2014
  • Chemotherapy has long been considered as one of useful strategies for cancer treatment. It is primarily based on the apoptosis that can selectively kill cancer cells. However, cancer cells can progressively develop an acquired resistance to apoptotic cell death, rendering refractory to chemo- and radiotherapies. Although the mechanism by which cells attained resistance to drug remains to be clarified, it might be caused by either pumping out of them or interfering with apoptotic signal cascades in response to cancer drugs. In case that cancer cells are defective in some part of apoptotic machinery by repeated exposure to anticancer drugs, alternative cell death mechanistically distinct from apoptosis could be adopted to remove cancer cells refractory to apoptosis-inducing agents. This review will mainly deal with harnessing of necrotic cell death, specifically, programmed necrosis and practical uses. Here, we begin with various defects of apoptotic death machinery in cancer cells, and then provide new perspective on programmed necrosis as an alternative anticancer approach.

Role of apoptotic and necrotic cell death under physiologic conditions

  • Han, Song-Iy;Kim, Yong-Seok;Kim, Tae-Hyoung
    • BMB Reports
    • /
    • 제41권1호
    • /
    • pp.1-10
    • /
    • 2008
  • Surgery, Chung-Ang Unviersity College of Medicine, Yong-San Hospital, Seoul, Korea Apoptosis is considered to be a programmed and controlled mode of cell death, whereas necrosis has long been described as uncontrolled and accidental cell death resulting from extremely harsh conditions. In the following review, we will discuss the features and physiological meanings as well as recent advances in the elucidation of the signaling pathways of both apoptotic cell death and programmed necrotic cell death.

The serine threonine kinase RIP3: lost and found

  • Morgan, Michael J.;Kim, You-Sun
    • BMB Reports
    • /
    • 제48권6호
    • /
    • pp.303-312
    • /
    • 2015
  • Receptor-interacting protein kinase-3 (RIP3, or RIPK3) is an essential protein in the "programmed", or "regulated" necrosis cell death pathway that is activated in response to death receptor ligands and other types of cellular stress. Programmed necrotic cell death is distinguished from its apoptotic counterpart in that it is not characterized by the activation of caspases; unlike apoptosis, programmed necrosis results in plasma membrane rupture, thus spilling the contents of the cell and triggering the activation of the immune system and inflammation. Here we discuss findings, including our own recent data, which show that RIP3 protein expression is absent in many cancer cell lines. The recent data suggests that the lack of RIP3 expression in a majority of these deficient cell lines is due to methylation-dependent silencing, which limits the responses of these cells to pro-necrotic stimuli. Importantly, RIP3 expression may be restored in many cancer cells through the use of hypomethylating agents, such as decitabine. The potential implications of loss of RIP3 expression in cancer are explored, along with possible consequences for chemotherapeutic response. [BMB Reports 2015; 48(6): 303-312]

Programmed Cell death in plants

  • Fukuda, Hiroo
    • 한국식물학회:학술대회논문집
    • /
    • 한국식물학회 1999년도 제13회 식물생명공학심포지움 New Approaches to Understand Gene Function in Plants and Application to Plant Biotechnology
    • /
    • pp.69-73
    • /
    • 1999
  • In plants as well as in other multicellular organisms, programmed cell death plays essential roles in the abortion or formation of specific cells and tissues during development to organize the plant [11, 15, 18]. A typical example of developmentally programmed cell death in plants is the death during differentiation of tracheary elements which are components of vessels and tracheids, a water-conducting system. The programming of cell death during tracheary element differentiation has been revealed to be unique to plant cells by using the in vitro Zinnia mesophyll cell culture system. In particular, new biosynthesis of autolysis-related enzymes such as cysteine proteases and nucleases, their accumulation of the vacuole and the programmed collapse of the vacuole are essential to the death of tracheary elements and differ greatly from the process of the apoptotic cell death in animals.

  • PDF

A Bacterial Metabolite, Compound K, Induces Programmed Necrosis in MCF-7 Cells via GSK3β

  • Kwak, Chae Won;Son, Young Min;Gu, Min Jeong;Kim, Girak;Lee, In Kyu;Kye, Yoon Chul;Kim, Han Wool;Song, Ki-Duk;Chu, Hyuk;Park, Byung-Chul;Lee, Hak-Kyo;Yang, Deok-Chun;Sprent, Jonathan;Yun, Cheol-Heui
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.1170-1176
    • /
    • 2015
  • Ginsenosides, the major active component of ginseng, are traditionally used to treat various diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is reported to inhibit cancer cell growth by inducing cell-cycle arrest or cell death, including apoptosis and necrosis. However, the precise effect of CK on breast cancer cells remains unclear. MCF-7 cells were treated with CK ($0-70{\mu}M$) for 24 or 48 h. Cell proliferation and death were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and flow cytometry assays, respectively. Changes in downstream signaling molecules involved in cell death, including glycogen synthase kinase $3\beta$ ($GSK3\beta$), $GSK3\beta$, $\beta$-catenin, and cyclin D1, were analyzed by western blot assay. To block $GSK3\beta$ signaling, MCF-7 cells were pretreated with $GSK3\beta$ inhibitors 1 h prior to CK treatment. Cell death and the expression of $\beta$-catenin and cyclin D1 were then examined. CK dose- and time-dependently inhibited MCF-7 cell proliferation. Interestingly, CK induced programmed necrosis, but not apoptosis, via the $GSK3\beta$ signaling pathway in MCF-7 cells. CK inhibited $GSK3\beta$ phosphorylation, thereby suppressing the expression of $\beta$-catenin and cyclin D1. Our results suggest that CK induces programmed necrosis in MCF-7 breast cancer cells via the $GSK3\beta$ signaling pathway.

Connections Between Various Trigger Factors and the RIP1/RIP3 Signaling Pathway Involved in Necroptosis

  • Zhang, Yuan-Yuan;Liu, Hao
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권12호
    • /
    • pp.7069-7074
    • /
    • 2013
  • Programmed cell death is a basic cellular process that is critical to maintaining tissue homeostasis. In contrast to apoptosis, necrosis was previously regarded as an unregulated and uncontrollable process. However, as research has progressed, necrosis, also known as necroptosis or programmed necrosis, is drawing increasing attention, not least becasu of its possible impications for cancer research. Necroptosis exhibits a unique signaling pathway that requires the involvement of receptor interaction protein kinases 1 and 3 (RIP1 and RIP3), mixed lineage kinase domain-like (MLKL), and phosphoglycerate mutase 5 (PGAM5) and can be specifically inhibited by necrostatins. Not only does necroptosis serve as a backup cell death program when apoptosis is inhibited, but it is now recognized to play a pivotal role in regulating various physiological processes and the pathogenesis of a variety of human diseases such as ischemic brain injury, immune system disorders and cancer. The control of necroptosis by various defined trigger factors and signaling pathways now offers the opportunity to target this cellular process for therapeutic purposes. The purpose of this paper is to review current findings concerning the connections between various trigger factors and the RIP1/RIP3 signaling pathway as it relates to necroptosis.

The role of necroptosis in the treatment of diseases

  • Cho, Young Sik
    • BMB Reports
    • /
    • 제51권5호
    • /
    • pp.219-224
    • /
    • 2018
  • Necroptosis is an emerging form of programmed cell death occurring via active and well-regulated necrosis, distinct from apoptosis morphologically, and biochemically. Necroptosis is mainly unmasked when apoptosis is compromised in response to tumor necrosis factor alpha. Unlike apoptotic cells, which are cleared by macrophages or neighboring cells, necrotic cells release danger signals, triggering inflammation, and exacerbating tissue damage. Evidence increasingly suggests that programmed necrosis is not only associated with pathophysiology of disease, but also induces innate immune response to viral infection. Therefore, necroptotic cell death plays both physiological and pathological roles. Physiologically, necroptosis induce an innate immune response as well as premature assembly of viral particles in cells infected with virus that abrogates host apoptotic machinery. On the other hand, necroptosis per se is detrimental, causing various diseases such as sepsis, neurodegenerative diseases and ischemic reperfusion injury. This review discusses the signaling pathways leading to necroptosis, associated necroptotic proteins with target-specific inhibitors and diseases involved. Several studies currently focus on protective approaches to inhibiting necroptotic cell death. In cancer biology, however, anticancer drug resistance severely hampers the efficacy of chemotherapy based on apoptosis. Pharmacological switch of cell death finds therapeutic application in drug- resistant cancers. Therefore, the possible clinical role of necroptosis in cancer control will be discussed in brief.

The roles of FADD in extrinsic apoptosis and necroptosis

  • Lee, Eun-Woo;Seo, Jin-Ho;Jeong, Man-Hyung;Lee, Sang-Sik;Song, Jae-Whan
    • BMB Reports
    • /
    • 제45권9호
    • /
    • pp.496-508
    • /
    • 2012
  • Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.

Cell Death and Stress Signaling in Glycogen Storage Disease Type I

  • Kim, So Youn;Bae, Yun Soo
    • Molecules and Cells
    • /
    • 제28권3호
    • /
    • pp.139-148
    • /
    • 2009
  • Cell death has been traditionally classified in apoptosis and necrosis. Apoptosis, known as programmed cell death, is an active form of cell death mechanism that is tightly regulated by multiple cellular signaling pathways and requires ATP for its appropriate process. Apoptotic death plays essential roles for successful development and maintenance of normal cellular homeostasis in mammalian. In contrast to apoptosis, necrosis is classically considered as a passive cell death process that occurs rather by accident in disastrous conditions, is not required for energy and eventually induces inflammation. Regardless of different characteristics between apoptosis and necrosis, it has been well defined that both are responsible for a wide range of human diseases. Glycogen storage disease type I (GSD-I) is a kind of human genetic disorders and is caused by the deficiency of a microsomal protein, glucose-6-phosphatase-${\alpha}$ ($G6Pase-{\alpha}$) or glucose-6-phosphate transporter (G6PT) responsible for glucose homeostasis, leading to GSD-Ia or GSD-Ib, respectively. This review summarizes cell deaths in GSD-I and mostly focuses on current knowledge of the neutrophil apoptosis in GSD-Ib based upon ER stress and redox signaling.

Interplay between autophagy and programmed cell death in mammalian neural stem cells

  • Chung, Kyung Min;Yu, Seong-Woon
    • BMB Reports
    • /
    • 제46권8호
    • /
    • pp.383-390
    • /
    • 2013
  • Mammalian neural stem cells (NSCs) are of particular interest because of their role in brain development and function. Recent findings suggest the intimate involvement of programmed cell death (PCD) in the turnover of NSCs. However, the underlying mechanisms of PCD are largely unknown. Although apoptosis is the best-defined form of PCD, accumulating evidence has revealed a wide spectrum of PCD encompassing apoptosis, autophagic cell death (ACD) and necrosis. This mini-review aims to illustrate a unique regulation of PCD in NSCs. The results of our recent studies on autophagic death of adult hippocampal neural stem (HCN) cells are also discussed. HCN cell death following insulin withdrawal clearly provides a reliable model that can be used to analyze the molecular mechanisms of ACD in the larger context of PCD. More research efforts are needed to increase our understanding of the molecular basis of NSC turnover under degenerating conditions, such as aging, stress and neurological diseases. Efforts aimed at protecting and harnessing endogenous NSCs will offer novel opportunities for the development of new therapeutic strategies for neuropathologies.