Browse > Article
http://dx.doi.org/10.5483/BMBRep.2012.45.9.186

The roles of FADD in extrinsic apoptosis and necroptosis  

Lee, Eun-Woo (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Seo, Jin-Ho (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Jeong, Man-Hyung (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Lee, Sang-Sik (Department of Biomedical Engineering, Kwandong University)
Song, Jae-Whan (Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University)
Publication Information
BMB Reports / v.45, no.9, 2012 , pp. 496-508 More about this Journal
Abstract
Fas-associated protein with death domain (FADD), an adaptor that bridges death receptor signaling to the caspase cascade, is indispensible for the induction of extrinsic apoptotic cell death. Interest in the non-apoptotic function of FADD has greatly increased due to evidence that FADD-deficient mice or dominant-negative FADD transgenic mice result in embryonic lethality and an immune defect without showing apoptotic features. Numerous studies have suggested that FADD regulates cell cycle progression, proliferation, and autophagy, affecting these phenomena. Recently, programmed necrosis, also called necroptosis, was shown to be a key mechanism that induces embryonic lethality and an immune defect. Supporting these findings, FADD was shown to be involved in various necroptosis models. In this review, we summarize the mechanism of extrinsic apoptosis and necroptosis, and discuss the in vivo and in vitro roles of FADD in necroptosis induced by various stimuli.
Keywords
Caspase-8; FADD; Necroptosis; Programmed necrosis; RIP3;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
Times Cited By SCOPUS : 26
연도 인용수 순위
  • Reference
1 Chang, L., Kamata, H., Solinas, G., Luo, J. L., Maeda, S., Venuprasad, K., Liu, Y. C. and Karin, M. (2006) The E3 ubiquitin ligase itch couples JNK activation to TNFalphainduced cell death by inducing c-FLIP(L) turnover. Cell 124, 601-613.   DOI   ScienceOn
2 Panka, D. J., Mano, T., Suhara, T., Walsh, K. and Mier, J. W. (2001) Phosphatidylinositol 3-kinase/Akt activity regulates c-FLIP expression in tumor cells. J. Biol. Chem. 276, 6893-6896.   DOI   ScienceOn
3 Pennarun, B., Meijer, A., de Vries, E. G., Kleibeuker, J. H., Kruyt, F. and de Jong, S. (2010) Playing the DISC: turning on TRAIL death receptor-mediated apoptosis in cancer. Biochim. Biophys. Acta. 1805, 123-140.
4 Feig, C., Tchikov, V., Schutze, S. and Peter, M. E. (2007) Palmitoylation of CD95 facilitates formation of SDS-stable receptor aggregates that initiate apoptosis signaling. EMBO J. 26, 221-231.   DOI   ScienceOn
5 Wagner, K. W., Punnoose, E. A., Januario, T., Lawrence, D. A., Pitti, R. M., Lancaster, K., Lee, D., von Goetz, M., Yee, S. F., Totpal, K., Huw, L., Katta, V., Cavet, G., Hymowitz, S. G., Amler, L. and Ashkenazi, A. (2007) Death-receptor O-glycosylation controls tumor-cell sensitivity to the proapoptotic ligand Apo2L/TRAIL. Nat. Med. 13, 1070-1077.   DOI   ScienceOn
6 Kaunisto, A., Kochin, V., Asaoka, T., Mikhailov, A., Poukkula, M., Meinander, A. and Eriksson, J. E. (2009) PKC-mediated phosphorylation regulates c-FLIP ubiquitylation and stability. Cell Death Differ. 16, 1215-1226.   DOI   ScienceOn
7 Chanvorachote, P., Nimmannit, U., Wang, L., Stehlik, C., Lu, B., Azad, N. and Rojanasakul, Y. (2005) Nitric oxide negatively regulates Fas CD95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of FLICE inhibitory protein. J. Biol. Chem. 280, 42044-42050.   DOI   ScienceOn
8 Poukkula, M., Kaunisto, A., Hietakangas, V., Denessiouk, K., Katajamaki, T., Johnson, M. S., Sistonen, L. and Eriksson, J. E. (2005) Rapid turnover of c-FLIPshort is determined by its unique C-terminal tail. J. Biol. Chem. 280, 27345-27355.   DOI   ScienceOn
9 Walsh, C. M., Wen, B. G., Chinnaiyan, A. M., O'Rourke, K., Dixit, V. M. and Hedrick, S. M. (1998) A role for FADD in T cell activation and development. Immunity 8, 439-449.   DOI   ScienceOn
10 Kabra, N. H., Kang, C., Hsing, L. C., Zhang, J. and Winoto, A. (2001) T cell-specific FADD-deficient mice: FADD is required for early T cell development. Proc. Natl. Acad. Sci. U.S.A. 98, 6307-6312.   DOI   ScienceOn
11 Osborn, S. L., Sohn, S. J. and Winoto, A. (2007) Constitutive phosphorylation mutation in Fas-associated death domain (FADD) results in early cell cycle defects. J. Biol. Chem. 282, 22786-22792.   DOI   ScienceOn
12 Imtiyaz, H. Z., Zhou, X., Zhang, H., Chen, D., Hu, T. and Zhang, J. (2009) The death domain of FADD is essential for embryogenesis, lymphocyte development, and proliferation. J. Biol. Chem. 284, 9917-9926.   DOI   ScienceOn
13 Osborn, S. L., Diehl, G., Han, S. J., Xue, L., Kurd, N., Hsieh, K., Cado, D., Robey, E. A. and Winoto, A. (2010) Fas-associated death domain (FADD) is a negative regulator of T-cell receptor-mediated necroptosis. Proc. Natl. Acad. Sci. U.S.A. 107, 13034-13039.   DOI   ScienceOn
14 Bell, B. D., Leverrier, S., Weist, B. M., Newton, R. H., Arechiga, A. F., Luhrs, K. A., Morrissette, N. S. and Walsh, C. M. (2008) FADD and caspase-8 control the outcome of autophagic signaling in proliferating T cells. Proc. Natl. Acad. Sci. U.S.A. 105, 16677-16682.   DOI   ScienceOn
15 Meylan, E., Burns, K., Hofmann, K., Blancheteau, V., Martinon, F., Kelliher, M. and Tschopp, J. (2004) RIP1 is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat. Immunol. 5, 503-507.   DOI   ScienceOn
16 Kaiser, W. J., Upton, J. W., Long, A. B., Livingston-Rosanoff, D., Daley-Bauer, L. P., Hakem, R., Caspary, T. and Mocarski, E. S. (2011) RIP3 mediates the embryonic lethality of caspase-8-deficient mice. Nature 471, 368-372.   DOI   ScienceOn
17 Ch'en, I. L., Tsau, J. S., Molkentin, J. D., Komatsu, M. and Hedrick, S. M. (2011) Mechanisms of necroptosis in T cells. J. Exp. Med. 208, 633-641.   DOI   ScienceOn
18 He, S., Liang, Y., Shao, F. and Wang, X. (2011) Toll-like receptors activate programmed necrosis in macrophages through a receptor-interacting kinase-3-mediated pathway. Proc. Natl. Acad. Sci. U.S.A. 108, 20054-20059.   DOI
19 Upton, J. W., Kaiser, W. J. and Mocarski, E. S. (2012) DAI/ZBP1/DLM-1 complexes with RIP3 to mediate virus-induced programmed necrosis that is targeted by murine cytomegalovirus vIRA. Cell Host & Microbe 11, 290-297.   DOI   ScienceOn
20 Rebsamen, M., Heinz, L. X., Meylan, E., Michallet, M. C., Schroder, K., Hofmann, K., Vazquez, J., Benedict, C. A. and Tschopp, J. (2009) DAI/ZBP1 recruits RIP1 and RIP3 through RIP homotypic interaction motifs to activate NF-kappaB. EMBO Rep. 10, 916-922.   DOI   ScienceOn
21 Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Hacker, G. and Leverkus, M. (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463.   DOI   ScienceOn
22 Bodmer, J. L., Holler, N., Reynard, S., Vinciguerra, P., Schneider, P., Juo, P., Blenis, J. and Tschopp, J. (2000) TRAIL receptor-2 signals apoptosis through FADD and caspase-8. Nat. Cell Biol. 2, 241-243.   DOI   ScienceOn
23 Tenev, T., Bianchi, K., Darding, M., Broemer, M., Langlais, C., Wallberg, F., Zachariou, A., Lopez, J., MacFarlane, M., Cain, K. and Meier, P. (2011) The Ripoptosome, a signaling platform that assembles in response to genotoxic stress and loss of IAPs. Mol. Cell 43, 432-448.   DOI   ScienceOn
24 Shen, H. M., Lin, Y., Choksi, S., Tran, J., Jin, T., Chang, L., Karin, M., Zhang, J. and Liu, Z. G. (2004) Essential roles of receptor-interacting protein and TRAF2 in oxidative stress-induced cell death. Mol. Cell Biol. 24, 5914-5922.   DOI   ScienceOn
25 Newton, K., Harris, A. W., Bath, M. L., Smith, K. G. and Strasser, A. (1998) A dominant interfering mutant of FADD/MORT1 enhances deletion of autoreactive thymocytes and inhibits proliferation of mature T lymphocytes. EMBO J. 17, 706-718.   DOI   ScienceOn
26 Kischkel, F. C., Lawrence, D. A., Chuntharapai, A., Schow, P., Kim, K. J. and Ashkenazi, A. (2000) Apo2L/TRAIL-dependent recruitment of endogenous FADD and caspase-8 to death receptors 4 and 5. Immunity 12, 611-620.   DOI   ScienceOn
27 Sprick, M. R., Weigand, M. A., Rieser, E., Rauch, C. T., Juo, P., Blenis, J., Krammer, P. H. and Walczak, H. (2000) FADD/MORT1 and caspase-8 are recruited to TRAIL receptors 1 and 2 and are essential for apoptosis mediated by TRAIL receptor 2. Immunity 12, 599-609.   DOI   ScienceOn
28 Irrinki, K. M., Mallilankaraman, K., Thapa, R. J., Chandramoorthy, H. C., Smith, F. J., Jog, N. R., Gandhirajan, R. K., Kelsen, S. G., Houser, S. R., May, M. J., Balachandran, S. and Madesh, M. (2011) Requirement of FADD, NEMO, and BAX/BAK for aberrant mitochondrial function in tumor necrosis factor alpha-induced necrosis. Mol. Cell Biol. 31, 3745-3758.   DOI   ScienceOn
29 Jin, Z. and El-Deiry, W. S. (2006) Distinct signaling pathways in TRAIL- versus tumor necrosis factor-induced apoptosis. Mol. Cell Biol. 26, 8136-8148.   DOI   ScienceOn
30 Oberst, A., Dillon, C. P., Weinlich, R., McCormick, L. L., Fitzgerald, P., Pop, C., Hakem, R., Salvesen, G. S. and Green, D. R. (2011) Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature 471, 363-367.   DOI   ScienceOn
31 Vercammen, D., Vandenabeele, P., Beyaert, R., Declercq, W. and Fiers, W. (1997) Tumour necrosis factor-induced necrosis versus anti-Fas-induced apoptosis in L929 cells. Cytokine 9, 801-808.   DOI   ScienceOn
32 Vanlangenakker, N., Vanden Berghe, T. and Vandenabeele, P. (2012) Many stimuli pull the necrotic trigger, an overview. Cell Death Differ. 19, 75-86.   DOI   ScienceOn
33 Los, M., Mozoluk, M., Ferrari, D., Stepczynska, A., Stroh, C., Renz, A., Herceg, Z., Wang, Z. Q. and Schulze-Osthoff, K. (2002) Activation and caspase-mediated inhibition of PARP: a molecular switch between fibroblast necrosis and apoptosis in death receptor signaling. Mol. Biol. Cell 13, 978-988.   DOI   ScienceOn
34 Benedetti, A., Comporti, M. and Esterbauer, H. (1980) Identification of 4-hydroxynonenal as a cytotoxic product originating from the peroxidation of liver microsomal lipids. Biochim. Biophys. Acta. 620, 281-296.   DOI   ScienceOn
35 Orrenius, S., Gogvadze, V. and Zhivotovsky, B. (2007) Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47, 143-183.   DOI   ScienceOn
36 Won, J. S. and Singh, I. (2006) Sphingolipid signaling and redox regulation. Free Radic. Biol. Med. 40, 1875-1888.   DOI   ScienceOn
37 Kagedal, K., Zhao, M., Svensson, I. and Brunk, U. T. (2001) Sphingosine-induced apoptosis is dependent on lysosomal proteases. Biochem. J. 359, 335-343.   DOI
38 Yeh, W. C., Pompa, J. L., McCurrach, M. E., Shu, H. B., Elia, A. J., Shahinian, A., Ng, M., Wakeham, A., Khoo, W., Mitchell, K., El-Deiry, W. S., Lowe, S. W., Goeddel, D. V. and Mak, T. W. (1998) FADD: essential for embryo development and signaling from some, but not all, inducers of apoptosis. Science 279, 1954-1958.   DOI   ScienceOn
39 Sun, L., Wang, H., Wang, Z., He, S., Chen, S., Liao, D., Wang, L., Yan, J., Liu, W., Lei, X. and Wang, X. (2012) Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell 148, 213-227.   DOI   ScienceOn
40 Wang, Z., Jiang, H., Chen, S., Du, F. and Wang, X. (2012) The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 148, 228-243.   DOI   ScienceOn
41 Zhang, J., Cado, D., Chen, A., Kabra, N. H. and Winoto, A. (1998) Fas-mediated apoptosis and activation-induced T-cell proliferation are defective in mice lacking FADD/Mort1. Nature 392, 296-300.   DOI   ScienceOn
42 Antosiewicz, J., Ziolkowski, W., Kaczor, J. J. and Herman-Antosiewicz, A. (2007) Tumor necrosis factor-alpha- induced reactive oxygen species formation is mediated by JNK1-dependent ferritin degradation and elevation of labile iron pool. Free Radic. Biol. Med. 43, 265-270.   DOI   ScienceOn
43 Xie, C., Zhang, N., Zhou, H., Li, J., Li, Q., Zarubin, T., Lin, S. C. and Han, J. (2005) Distinct roles of basal steady-state and induced H-ferritin in tumor necrosis factor- induced death in L929 cells. Mol. Cell Biol. 25, 6673-6681.   DOI   ScienceOn
44 Murthy, C. R., Rama Rao, K. V., Bai, G. and Norenberg, M. D. (2001) Ammonia-induced production of free radicals in primary cultures of rat astrocytes. J. Neurosci. Res. 66, 282-288.   DOI   ScienceOn
45 Saelens, X., Festjens, N., Parthoens, E., Vanoverberghe, I., Kalai, M., van Kuppeveld, F. and Vandenabeele, P. (2005) Protein synthesis persists during necrotic cell death. J. Cell Biol. 168, 545-551.   DOI   ScienceOn
46 Van Herreweghe, F., Mao, J., Chaplen, F. W., Grooten, J., Gevaert, K., Vandekerckhove, J. and Vancompernolle, K. (2002) Tumor necrosis factor-induced modulation of glyoxalase I activities through phosphorylation by PKA results in cell death and is accompanied by the formation of a specific methylglyoxal-derived AGE. Proc. Natl. Acad. Sci. U.S.A. 99, 949-954.   DOI   ScienceOn
47 Albrecht, J. and Norenberg, M. D. (2006) Glutamine: a Trojan horse in ammonia neurotoxicity. Hepatology 44, 788-794.   DOI   ScienceOn
48 Soldani, C. and Scovassi, A. I. (2002) Poly(ADP-ribose) polymerase-1 cleavage during apoptosis: an update. Apoptosis 7, 321-328.   DOI   ScienceOn
49 Sun, X. M., Butterworth, M., MacFarlane, M., Dubiel, W., Ciechanover, A. and Cohen, G. M. (2004) Caspase activation inhibits proteasome function during apoptosis. Mol. Cell 14, 81-93.   DOI   ScienceOn
50 Vanlangenakker, N., Bertrand, M. J., Bogaert, P., Vandenabeele, P. and Berghe, T. V. (2011) TNF-induced necroptosis in L929 cells is tightly regulated by multiple TNFR1 complex I and II members. Cell Death Dis. 2, e230.   DOI   ScienceOn
51 Micheau, O. and Tschopp, J. (2003) Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell 114, 181-190.   DOI   ScienceOn
52 Degterev, A., Hitomi, J., Germscheid, M., Ch'en, I. L., Korkina, O., Teng, X., Abbott, D., Cuny, G. D., Yuan, C., Wagner, G., Hedrick, S. M., Gerber, S. A., Lugovskoy, A. and Yuan, J. (2008) Identification of RIP1 kinase as a specific cellular target of necrostatins. Nat. Chem. Biol. 4, 313-321.   DOI   ScienceOn
53 Gunther, C., Martini, E., Wittkopf, N., Amann, K., Weigmann, B., Neumann, H., Waldner, M. J., Hedrick, S. M., Tenzer, S., Neurath, M. F. and Becker, C. (2011) Caspase-8 regulates TNF-alpha-induced epithelial necroptosis and terminal ileitis. Nature 477, 335-339.   DOI   ScienceOn
54 Duprez, L., Takahashi, N., Van Hauwermeiren, F., Vandendriessche, B., Goossens, V., Vanden Berghe, T., Declercq, W., Libert, C., Cauwels, A. and Vandenabeele, P. (2011) RIP kinase-dependent necrosis drives lethal systemic inflammatory response syndrome. Immunity 35, 908-918.   DOI   ScienceOn
55 Vercammen, D., Beyaert, R., Denecker, G., Goossens, V., Van Loo, G., Declercq, W., Grooten, J., Fiers, W. and Vandenabeele, P. (1998) Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J. Exp. Med. 187, 1477-1485.   DOI
56 Bohgaki, T., Mozo, J., Salmena, L., Matysiak-Zablocki, E., Bohgaki, M., Sanchez, O., Strasser, A., Hakem, A. and Hakem, R. (2011) Caspase-8 inactivation in T cells increases necroptosis and suppresses autoimmunity in Bim-/- mice. J. Cell Biol. 195, 277-291.   DOI   ScienceOn
57 Schulze-Osthoff, K., Bakker, A. C., Vanhaesebroeck, B., Beyaert, R., Jacob, W. A. and Fiers, W. (1992) Cytotoxic activity of tumor necrosis factor is mediated by early damage of mitochondrial functions. Evidence for the involvement of mitochondrial radical generation. J. Biol. Chem. 267, 5317-5323.
58 Upton, J. W., Kaiser, W. J. and Mocarski, E. S. (2010) Virus inhibition of RIP3-dependent necrosis. Cell Host & Microbe 7, 302-313.   DOI   ScienceOn
59 Kalai, M., Van Loo, G., Vanden Berghe, T., Meeus, A., Burm, W., Saelens, X. and Vandenabeele, P. (2002) Tipping the balance between necrosis and apoptosis in human and murine cells treated with interferon and dsRNA. Cell Death Differ. 9, 981-994.   DOI   ScienceOn
60 Apetoh, L., Ghiringhelli, F., Tesniere, A., Obeid, M., Ortiz, C., Criollo, A., Mignot, G., Maiuri, M. C., Ullrich, E., Saulnier, P., Yang, H., Amigorena, S., Ryffel, B., Barrat, F. J., Saftig, P., Levi, F., Lidereau, R., Nogues, C., Mira, J. P., Chompret, A., Joulin, V., Clavel-Chapelon, F., Bourhis, J., Andre, F., Delaloge, S., Tursz, T., Kroemer, G. and Zitvogel, L. (2007) Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat. Med. 13, 1050-1059.   DOI   ScienceOn
61 Hacker, H. and Karin, M. (2006) Regulation and function of IKK and IKK-related kinases. Sci. STKE 2006, re13.   DOI   ScienceOn
62 Hitomi, J., Christofferson, D. E., Ng, A., Yao, J., Degterev, A., Xavier, R. J. and Yuan, J. (2008) Identification of a molecular signaling network that regulates a cellular necrotic cell death pathway. Cell 135, 1311-1323.   DOI   ScienceOn
63 Laukens, B., Jennewein, C., Schenk, B., Vanlangenakker, N., Schier, A., Cristofanon, S., Zobel, K., Deshayes, K., Vucic, D., Jeremias, I., Bertrand, M. J., Vandenabeele, P. and Fulda, S. (2011) Smac mimetic bypasses apoptosis resistance in FADD- or caspase-8-deficient cells by priming for tumor necrosis factor alpha-induced necroptosis. Neoplasia 13, 971-979.   DOI
64 McComb, S., Cheung, H. H., Korneluk, R. G., Wang, S., Krishnan, L. and Sad, S. (2012) cIAP1 and cIAP2 limit macrophage necroptosis by inhibiting Rip1 and Rip3 activation. Cell Death Differ. (In press).
65 Moulin, M., Anderton, H., Voss, A. K., Thomas, T., Wong, W. W., Bankovacki, A., Feltham, R., Chau, D., Cook, W. D., Silke, J. and Vaux, D. L. (2012) IAPs limit activation of RIP kinases by TNF receptor 1 during development. EMBO J. 31, 1679-1691.   DOI
66 Lin, Y., Choksi, S., Shen, H. M., Yang, Q. F., Hur, G. M., Kim, Y. S., Tran, J. H., Nedospasov, S. A. and Liu, Z. G. (2004) Tumor necrosis factor-induced nonapoptotic cell death requires receptor-interacting protein-mediated cellular reactive oxygen species accumulation. J. Biol. Chem. 279, 10822-10828.   DOI   ScienceOn
67 He, S., Wang, L., Miao, L., Wang, T., Du, F., Zhao, L. and Wang, X. (2009) Receptor interacting protein kinase- 3 determines cellular necrotic response to TNFalpha. Cell 137, 1100-1111.   DOI   ScienceOn
68 Vercammen, D., Brouckaert, G., Denecker, G., Van de Craen, M., Declercq, W., Fiers, W. and Vandenabeele, P. (1998) Dual signaling of the Fas receptor: initiation of both apoptotic and necrotic cell death pathways. J. Exp. Med. 188, 919-930.   DOI
69 Degterev, A., Huang, Z., Boyce, M., Li, Y., Jagtap, P., Mizushima, N., Cuny, G. D., Mitchison, T. J., Moskowitz, M. A. and Yuan, J. (2005) Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol. 1, 112-119.   DOI   ScienceOn
70 Chan, F. K., Shisler, J., Bixby, J. G., Felices, M., Zheng, L., Appel, M., Orenstein, J., Moss, B. and Lenardo, M. J. (2003) A role for tumor necrosis factor receptor-2 and receptor- interacting protein in programmed necrosis and antiviral responses. J. Biol. Chem. 278, 51613-51621.   DOI   ScienceOn
71 Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. (2009) Phosphorylationdriven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell 137, 1112-1123.   DOI   ScienceOn
72 Zhang, D. W., Shao, J., Lin, J., Zhang, N., Lu, B. J., Lin, S. C., Dong, M. Q. and Han, J. (2009) RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science 325, 332-336.   DOI   ScienceOn
73 Ma, Y., Temkin, V., Liu, H. and Pope, R. M. (2005) NF-kappaB protects macrophages from lipopolysaccharideinduced cell death: the role of caspase 8 and receptor-interacting protein. J. Biol. Chem. 280, 41827-41834.   DOI   ScienceOn
74 Kim, Y., Suh, N., Sporn, M. and Reed, J. C. (2002) An inducible pathway for degradation of FLIP protein sensitizes tumor cells to TRAIL-induced apoptosis. J. Biol. Chem. 277, 22320-22329.   DOI   ScienceOn
75 Varfolomeev, E. and Vucic, D. (2008) (Un)expected roles of c-IAPs in apoptotic and NFkappaB signaling pathways. Cell Cycle 7, 1511-1521.   DOI
76 Xu, G., Tan, X., Wang, H., Sun, W., Shi, Y., Burlingame, S., Gu, X., Cao, G., Zhang, T., Qin, J. and Yang, J. (2010) Ubiquitin-specific peptidase 21 inhibits tumor necrosis factor alpha-induced nuclear factor kappaB activation via binding to and deubiquitinating receptor-interacting protein 1. J. Biol. Chem. 285, 969-978.   DOI   ScienceOn
77 Wang, L., Du, F. and Wang, X. (2008) TNF-alpha induces two distinct caspase-8 activation pathways. Cell 133, 693-703.   DOI   ScienceOn
78 Schutze, S., Tchikov, V. and Schneider-Brachert, W. (2008) Regulation of TNFR1 and CD95 signalling by receptor compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 655-662.   DOI   ScienceOn
79 Vince, J. E., Wong, W. W., Khan, N., Feltham, R., Chau, D., Ahmed, A. U., Benetatos, C. A., Chunduru, S. K., Condon, S. M., McKinlay, M., Brink, R., Leverkus, M., Tergaonkar, V., Schneider, P., Callus, B. A., Koentgen, F., Vaux, D. L. and Silke, J. (2007) IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell 131, 682-693.   DOI   ScienceOn
80 Ozturk, S., Schleich, K. and Lavrik, I. N. (2012) Cellular FLICE-like inhibitory proteins (c-FLIPs): fine-tuners of life and death decisions. Exp. Cell Res. 318, 1324-1331.   DOI   ScienceOn
81 Yu, J. W. and Shi, Y. (2008) FLIP and the death effector domain family. Oncogene 27, 6216-6227.   DOI   ScienceOn
82 Micheau, O., Thome, M., Schneider, P., Holler, N., Tschopp, J., Nicholson, D. W., Briand, C. and Grutter, M. G. (2002) The long form of FLIP is an activator of caspase- 8 at the Fas death-inducing signaling complex. J. Biol. Chem. 277, 45162-45171.   DOI   ScienceOn
83 Boatright, K. M., Deis, C., Denault, J. B., Sutherlin, D. P. and Salvesen, G. S. (2004) Activation of caspases-8 and -10 by FLIP(L). Biochem. J. 382, 651-657.   DOI   ScienceOn
84 Feng, S., Yang, Y., Mei, Y., Ma, L., Zhu, D. E., Hoti, N., Castanares, M. and Wu, M. (2007) Cleavage of RIP3 inactivates its caspase-independent apoptosis pathway by removal of kinase domain. Cell Signal 19, 2056-2067.   DOI   ScienceOn
85 Wilson, N. S., Dixit, V. and Ashkenazi, A. (2009) Death receptor signal transducers: nodes of coordination in immune signaling networks. Nat. Immunol. 10, 348-355.   DOI   ScienceOn
86 Holler, N., Zaru, R., Micheau, O., Thome, M., Attinger, A., Valitutti, S., Bodmer, J. L., Schneider, P., Seed, B. and Tschopp, J. (2000) Fas triggers an alternative, caspase- 8-independent cell death pathway using the kinase RIP as effector molecule. Nat. Immunol. 1, 489-495.   DOI   ScienceOn
87 Lin, Y., Devin, A., Rodriguez, Y. and Liu, Z. G. (1999) Cleavage of the death domain kinase RIP by caspase-8 prompts TNF-induced apoptosis. Genes Dev. 13, 2514-2526.   DOI   ScienceOn
88 O'Donnell, M. A., Perez-Jimenez, E., Oberst, A., Ng, A., Massoumi, R., Xavier, R., Green, D. R. and Ting, A. T. (2011) Caspase 8 inhibits programmed necrosis by processing CYLD. Nat. Cell Biol. 13, 1437-1442.   DOI   ScienceOn
89 Kroemer, G., Galluzzi, L. and Brenner, C. (2007) Mitochondrial membrane permeabilization in cell death. Physiol. Rev. 87, 99-163.   DOI   ScienceOn
90 Mahmood, Z. and Shukla, Y. (2010) Death receptors: targets for cancer therapy. Exp. Cell Res. 316, 887-899.   DOI   ScienceOn
91 Mc Guire, C., Beyaert, R. and van Loo, G. (2011) Death receptor signalling in central nervous system inflammation and demyelination. Trends Neurosci. 34, 619-628.   DOI   ScienceOn
92 French, L. E. and Tschopp, J. (2003) Protein-based therapeutic approaches targeting death receptors. Cell Death Differ. 10, 117-123.   DOI   ScienceOn
93 Wajant, H. (2003) Death receptors. Essays Biochem. 39, 53-71.
94 Liao, W., Xiao, Q., Tchikov, V., Fujita, K., Yang, W., Wincovitch, S., Garfield, S., Conze, D., El-Deiry, W. S., Schutze, S. and Srinivasula, S. M. (2008) CARP-2 is an endosome- associated ubiquitin ligase for RIP and regulates TNF-induced NF-kappaB activation. Curr. Biol. 18, 641-649.   DOI   ScienceOn
95 Perez, D. and White, E. (2003) E1A sensitizes cells to tumor necrosis factor alpha by downregulating c-FLIP S. J Virol. 77, 2651-2662.   DOI
96 Cursi, S., Rufini, A., Stagni, V., Condo, I., Matafora, V., Bachi, A., Bonifazi, A. P., Coppola, L., Superti-Furga, G., Testi, R. and Barila, D. (2006) Src kinase phosphorylates Caspase-8 on Tyr380: a novel mechanism of apoptosis suppression. EMBO J. 25, 1895-1905.   DOI   ScienceOn
97 McDonald, E. R., 3rd and El-Deiry, W. S. (2004) Suppression of caspase-8- and -10-associated RING proteins results in sensitization to death ligands and inhibition of tumor cell growth. Proc. Natl. Acad. Sci. U.S.A. 101, 6170-6175.   DOI   ScienceOn
98 Jesenberger, V. and Jentsch, S. (2002) Deadly encounter: ubiquitin meets apoptosis. Nat. Rev. Mol. Cell Biol. 3, 112-121.   DOI   ScienceOn
99 Lee, J. C. and Peter, M. E. (2003) Regulation of apoptosis by ubiquitination. Immunol. Rev. 193, 39-47.   DOI   ScienceOn
100 Lee, E. W., Kim, J. H., Ahn, Y. H., Seo, J., Ko, A., Jeong, M., Kim, S. J., Ro, J. Y., Park, K. M., Lee, H. W., Park, E. J., Chun, K. H. and Song, J. (2012) Ubiquitination and degradation of the FADD adaptor protein regulate death receptor-mediated apoptosis and necroptosis. Nat. Commun. 3, 978.   DOI   ScienceOn
101 Laster, S. M., Wood, J. G. and Gooding, L. R. (1988) Tumor necrosis factor can induce both apoptic and necrotic forms of cell lysis. J. Immunol. 141, 2629-2634.
102 Ea, C. K., Deng, L., Xia, Z. P., Pineda, G. and Chen, Z. J. (2006) Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol. Cell 22, 245-257.   DOI   ScienceOn
103 Symons, A., Beinke, S. and Ley, S. C. (2006) MAP kinase kinase kinases and innate immunity. Trends Immunol. 27, 40-48.   DOI   ScienceOn
104 Varfolomeev, E. E. and Ashkenazi, A. (2004) Tumor necrosis factor: an apoptosis JuNKie? Cell 116, 491-497.   DOI   ScienceOn
105 Bertrand, M. J., Milutinovic, S., Dickson, K. M., Ho, W. C., Boudreault, A., Durkin, J., Gillard, J. W., Jaquith, J. B., Morris, S. J. and Barker, P. A. (2008) cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell 30, 689-700.   DOI   ScienceOn
106 Kanayama, A., Seth, R. B., Sun, L., Ea, C. K., Hong, M., Shaito, A., Chiu, Y. H., Deng, L. and Chen, Z. J. (2004) TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol. Cell 15, 535-548.   DOI   ScienceOn
107 Declercq, W., Vanden Berghe, T. and Vandenabeele, P. (2009) RIP kinases at the crossroads of cell death and survival. Cell 138, 229-232.   DOI   ScienceOn
108 Vandenabeele, P., Galluzzi, L., Vanden Berghe, T. and Kroemer, G. (2010) Molecular mechanisms of necroptosis: an ordered cellular explosion. Nat. Rev. Mol. Cell Biol. 11, 700-714.   DOI   ScienceOn
109 Shembade, N., Ma, A. and Harhaj, E. W. (2010) Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science 327, 1135-1139.   DOI   ScienceOn
110 Enesa, K., Zakkar, M., Chaudhury, H., Luong le, A., Rawlinson, L., Mason, J. C., Haskard, D. O., Dean, J. L. and Evans, P. C. (2008) NF-kappaB suppression by the deubiquitinating enzyme Cezanne: a novel negative feedback loop in pro-inflammatory signaling. J. Biol. Chem. 283, 7036-7045.   DOI   ScienceOn
111 Tourneur, L., Delluc, S., Levy, V., Valensi, F., Radford- Weiss, I., Legrand, O., Vargaftig, J., Boix, C., Macintyre, E. A., Varet, B., Chiocchia, G. and Buzyn, A. (2004) Absence or low expression of fas-associated protein with death domain in acute myeloid leukemia cells predicts resistance to chemotherapy and poor outcome. Cancer Res. 64, 8101-8108.   DOI   ScienceOn
112 Kischkel, F. C., Hellbardt, S., Behrmann, I., Germer, M., Pawlita, M., Krammer, P. H. and Peter, M. E. (1995) Cytotoxicity-dependent APO-1 (Fas/CD95)-associated proteins form a death-inducing signaling complex (DISC) with the receptor. EMBO J. 14, 5579-5588.
113 Chen, G., Bhojani, M. S., Heaford, A. C., Chang, D. C., Laxman, B., Thomas, D. G., Griffin, L. B., Yu, J., Coppola, J. M., Giordano, T. J., Lin, L., Adams, D., Orringer, M. B., Ross, B. D., Beer, D. G. and Rehemtulla, A. (2005) Phosphorylated FADD induces NF-kappaB, perturbs cell cycle, and is associated with poor outcome in lung adenocarcinomas. Proc. Natl. Acad. Sci. U.S.A. 102, 12507-12512.   DOI   ScienceOn
114 Tourneur, L., Mistou, S., Michiels, F. M., Devauchelle, V., Renia, L., Feunteun, J. and Chiocchia, G. (2003) Loss of FADD protein expression results in a biased Fas-signaling pathway and correlates with the development of tumoral status in thyroid follicular cells. Oncogene 22, 2795-2804.   DOI   ScienceOn
115 Bonnet, M. C., Preukschat, D., Welz, P. S., van Loo, G., Ermolaeva, M. A., Bloch, W., Haase, I. and Pasparakis, M. (2011) The adaptor protein fadd protects epidermal keratinocytes from necroptosis in vivo and prevents skin inflammation. Immunity 35, 572-582.   DOI   ScienceOn
116 Lu, J. V., Weist, B. M., van Raam, B. J., Marro, B. S., Nguyen, L. V., Srinivas, P., Bell, B. D., Luhrs, K. A., Lane, T. E., Salvesen, G. S. and Walsh, C. M. (2011) Complementary roles of Fas-associated death domain (FADD) and receptor interacting protein kinase-3 (RIPK3) in T-cell homeostasis and antiviral immunity. Proc. Natl. Acad. Sci. U.S.A. 108, 15312-15317.   DOI   ScienceOn
117 Scaffidi, C., Fulda, S., Srinivasan, A., Friesen, C., Li, F., Tomaselli, K. J., Debatin, K. M., Krammer, P. H. and Peter, M. E. (1998) Two CD95 (APO-1/Fas) signaling pathways. EMBO J. 17, 1675-1687.   DOI   ScienceOn
118 Schinske, K. A., Nyati, S., Khan, A. P., Williams, T. M., Johnson, T. D., Ross, B. D., Tomas, R. P. and Rehemtulla, A. (2011) A novel kinase inhibitor of FADD phosphorylation chemosensitizes through the inhibition of NF-kappaB. Mol. Cancer Ther. 10, 1807-1817.   DOI
119 Bhojani, M. S., Chen, G., Ross, B. D., Beer, D. G. and Rehemtulla, A. (2005) Nuclear localized phosphorylated FADD induces cell proliferation and is associated with aggressive lung cancer. Cell Cycle. 4, 1478-1481.   DOI
120 Werner, M. H., Wu, C. and Walsh, C. M. (2006) Emerging roles for the death adaptor FADD in death receptor avidity and cell cycle regulation. Cell Cycle. 5, 2332-2338.   DOI
121 Barnhart, B. C., Alappat, E. C. and Peter, M. E. (2003) The CD95 type I/type II model. Semin. Immunol. 15, 185-193.   DOI   ScienceOn
122 Yin, X. M., Wang, K., Gross, A., Zhao, Y., Zinkel, S., Klocke, B., Roth, K. A. and Korsmeyer, S. J. (1999) Bid-deficient mice are resistant to Fas-induced hepatocellular apoptosis. Nature 400, 886-891.   DOI   ScienceOn
123 Ozoren, N. and El-Deiry, W. S. (2002) Defining characteristics of Types I and II apoptotic cells in response to TRAIL. Neoplasia 4, 551-557.   DOI   ScienceOn
124 Willis, S. N. and Adams, J. M. (2005) Life in the balance: how BH3-only proteins induce apoptosis. Curr. Opin. Cell Biol. 17, 617-625.   DOI   ScienceOn
125 Johnstone, R. W., Frew, A. J. and Smyth, M. J. (2008) The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8, 782-798.   DOI   ScienceOn
126 Verhagen, A. M., Ekert, P. G., Pakusch, M., Silke, J., Connolly, L. M., Reid, G. E., Moritz, R. L., Simpson, R. J. and Vaux, D. L. (2000) Identification of DIABLO, a mammalian protein that promotes apoptosis by binding to and antagonizing IAP proteins. Cell 102, 43-53.   DOI   ScienceOn
127 Du, C., Fang, M., Li, Y., Li, L. and Wang, X. (2000) Smac, a mitochondrial protein that promotes cytochrome c-dependent caspase activation by eliminating IAP inhibition. Cell 102, 33-42.   DOI   ScienceOn
128 Lavrik, I., Golks, A. and Krammer, P. H. (2005) Death receptor signaling. J. Cell Sci. 118, 265-267.   DOI   ScienceOn
129 Zhang, H., Zhou, X., McQuade, T., Li, J., Chan, F. K. and Zhang, J. (2011) Functional complementation between FADD and RIP1 in embryos and lymphocytes. Nature 471, 373-376.   DOI   ScienceOn
130 Welz, P. S., Wullaert, A., Vlantis, K., Kondylis, V., Fernandez- Majada, V., Ermolaeva, M., Kirsch, P., Sterner-Kock, A., van Loo, G. and Pasparakis, M. (2011) FADD prevents RIP3-mediated epithelial cell necrosis and chronic intestinal inflammation. Nature 477, 330-334.   DOI   ScienceOn
131 Jang, M. S., Lee, S. J., Kim, C. J., Lee, C. W. and Kim, E. (2011) Phosphorylation by polo-like kinase 1 induces the tumor-suppressing activity of FADD. Oncogene 30, 471-481.   DOI   ScienceOn
132 Jang, M. S., Lee, S. J., Kang, N. S. and Kim, E. (2011) Cooperative phosphorylation of FADD by Aur-A and Plk1 in response to taxol triggers both apoptotic and necrotic cell death. Cancer Res. 71, 7207-7215.   DOI   ScienceOn
133 Alappat, E. C., Volkland, J. and Peter, M. E. (2003) Cell cycle effects by C-FADD depend on its C-terminal phosphorylation site. J. Biol. Chem. 278, 41585-41588.   DOI   ScienceOn
134 Rochat-Steiner, V., Becker, K., Micheau, O., Schneider, P., Burns, K. and Tschopp, J. (2000) FIST/HIPK3: a Fas/FADD-interacting serine/threonine kinase that induces FADD phosphorylation and inhibits fas-mediated Jun NH(2)-terminal kinase activation. J. Exp. Med. 192, 1165-1174.   DOI
135 Scaffidi, C., Volkland, J., Blomberg, I., Hoffmann, I., Krammer, P. H. and Peter, M. E. (2000) Phosphorylation of FADD/ MORT1 at serine 194 and association with a 70-kDa cell cycle-regulated protein kinase. J. Immunol. 164, 1236-1242.   DOI
136 Schrijvers, M. L., Pattje, W. J., Slagter-Menkema, L., Mastik, M. F., Gibcus, J. H., Langendijk, J. A., van der Wal, J. E., van der Laan, B. F. and Schuuring, E. (2012) FADD expression as a prognosticator in early-stage glottic squamous cell carcinoma of the larynx treated primarily with radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 83, 1220-1226.   DOI   ScienceOn
137 Alappat, E. C., Feig, C., Boyerinas, B., Volkland, J., Samuels, M., Murmann, A. E., Thorburn, A., Kidd, V. J., Slaughter, C. A., Osborn, S. L., Winoto, A., Tang, W. J. and Peter, M. E. (2005) Phosphorylation of FADD at serine 194 by CKIalpha regulates its nonapoptotic activities. Mol. Cell 19, 321-332.   DOI   ScienceOn
138 Tourneur, L. and Chiocchia, G. (2010) FADD: a regulator of life and death. Trends Immunol. 31, 260-269.   DOI   ScienceOn