Browse > Article

Harnessing of Programmed Necrosis for Fighting against Cancers  

Cho, Young Sik (College of Pharmacy, Keimyung University)
Park, Seung Yeon (College of Pharmacy, Keimyung University)
Publication Information
Biomolecules & Therapeutics / v.22, no.3, 2014 , pp. 167-175 More about this Journal
Chemotherapy has long been considered as one of useful strategies for cancer treatment. It is primarily based on the apoptosis that can selectively kill cancer cells. However, cancer cells can progressively develop an acquired resistance to apoptotic cell death, rendering refractory to chemo- and radiotherapies. Although the mechanism by which cells attained resistance to drug remains to be clarified, it might be caused by either pumping out of them or interfering with apoptotic signal cascades in response to cancer drugs. In case that cancer cells are defective in some part of apoptotic machinery by repeated exposure to anticancer drugs, alternative cell death mechanistically distinct from apoptosis could be adopted to remove cancer cells refractory to apoptosis-inducing agents. This review will mainly deal with harnessing of necrotic cell death, specifically, programmed necrosis and practical uses. Here, we begin with various defects of apoptotic death machinery in cancer cells, and then provide new perspective on programmed necrosis as an alternative anticancer approach.
Apoptosis; Autophagy; Programmed necrosis; Chemotherapy;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wu, Y. T., Tan, H. L., Huang, Q., Sun, X. J., Zhu, X. and Shen, H. M. (2011) zVAD-induced necroptosis in L929 cells depends on autocrine production of TNFalpha mediated by the PKC-MAPKs-AP-1 pathway. Cell Death Differ. 18, 26-37.   DOI
2 Yamazaki, T., Hannani, D., Poirier-Colame, V., Ladoire, S., Locher, C., Sistigu, A., Prada, N., Adjemian, S., Catani, J. P., Freudenberg, M., Galanos, C., Andre, F., Kroemer, G. and Zitvogel, L. (2014) Defective immunogenic cell death of HMGB1-deficient tumors: compensatory therapy with TLR4 agonists. Cell Death Differ. 21, 69-78.   DOI
3 Yang, Z. and Klionsky, D. J. (2010) Eaten alive: a history of macroautophagy. Nat. Cell Biol. 12, 814-822.   DOI   ScienceOn
4 Yang, Z. J., Chee, C. E., Huang, S. and Sinicrope, F. A. (2011) The role of autophagy in cancer: therapeutic implications. Mol. Cancer Ther. 10, 1533-1541.   DOI
5 Ye, Y. C., Wang, H. J., Chen, L., Liu, W. W., Tashiro, S., Onodera, S., Xia, M. Y. and Ikejima, T. (2013) Negatively-regulated necroptosis by autophagy required caspase-6 activation in TNFalpha-treated murine fibrosarcoma L929 cells. Int. Immunopharmacol. 17, 548-555.   DOI
6 Zobalova, R., McDermott, L., Stantic, M., Prokopova, K., Dong, L. F. and Neuzil, J. (2008) CD133-positive cells are resistant to TRAIL due to up-regulation of FLIP. Biochem. Biophys. Res. Commun. 373, 567-571.   DOI
7 Zong, W. X., Ditsworth, D., Bauer, D. E., Wang, Z. Q. and Thompson, C. B. (2004) Alkylating DNA damage stimulates a regulated form of necrotic cell death. Genes Dev. 18, 1272-1282.   DOI   ScienceOn
8 Safa, A. R. (2012) c-FLIP, a master anti-apoptotic regulator. Exp. Oncol. 34, 176-184.
9 Safa, A. R. and Pollok, K. E. (2011) Targeting the anti-apoptotic protein c-FLIP for cancer therapy. Cancers (Basel) 3, 1639-1671.   DOI
10 Salomon, A. R., Voehringer, D. W., Herzenberg, L. A. and Khosla, C. (2000) Understanding and exploiting the mechanistic basis for selectivity of polyketide inhibitors of F(0)F(1)-ATPase. Proc. Natl. Acad. Sci. U.S.A. 97, 14766-14771.   DOI
11 Speirs, C. K., Hwang, M., Kim, S., Li, W., Chang, S., Varki, V., Mitchell, L., Schleicher, S. and Lu, B. (2011) Harnessing the cell death pathway for targeted cancer treatment. Am. J. Cancer Res. 1, 43-61.
12 Strasser, A., O'Connor, L. and Dixit, V. M. (2000) Apoptosis signaling. Annu. Rev. Biochem. 69, 217-245.   DOI   ScienceOn
13 Vanden Berghe, T., Kalai, M., van Loo, G., Declercq, W. and Vandenabeele, P. (2003) Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J. Biol. Chem. 278, 5622-5629.   DOI
14 Sun, X., Li, Y., Li, W., Zhang, B., Wang, A. J., Sun, J., Mikule, K., Jiang, Z. and Li, C. J. (2006) Selective induction of necrotic cell death in cancer cells by beta-lapachone through activation of DNA damage response pathway. Cell Cycle 5, 2029-2035.   DOI
15 Tagliarino, C., Pink, J. J., Dubyak, G. R., Nieminen, A. L. and Boothman, D. A. (2001) Calcium is a key signaling molecule in betalapachone- mediated cell death. J. Biol. Chem. 276, 19150-19159.   DOI   ScienceOn
16 Tsuda, H., Ning, Z., Yamaguchi, Y. and Suzuki, N. (2012) Programmed cell death and its possible relationship with periodontal disease. J. Oral Sci. 54, 137-149.   DOI
17 Vandenabeele, P., Declercq, W., Van Herreweghe, F. and Vanden Berghe, T. (2010) The role of the kinases RIP1 and RIP3 in TNFinduced necrosis. Sci. Signal. 3, re4.
18 Wang, H., Lu, Q., Cheng, S., Wang, X. and Zhang, H. (2013) Autopha gy activity contributes to programmed cell death in Caenorhabditis elegans. Autophagy 9, 1975-1982.   DOI
19 Wang, X. and Weaver, D. T. (2011) The ups and downs of DNA repair biomarkers for PARP inhibitor therapies. Am. J. Cancer Res. 1, 301-327.
20 Mohr, A., Zwacka, R. M., Jarmy, G., Buneker, C., Schrezenmeier, H., Dohner, K., Beltinger, C., Wiesneth, M., Debatin, K. M. and Stahnke, K. (2005) Caspase-8L expression protects CD34+ hematopoietic progenitor cells and leukemic cells from CD95-mediated apoptosis. Oncogene 24, 2421-2429.   DOI   ScienceOn
21 Muzes, G. and Sipos, F. (2012) Anti-tumor immunity, autophagy and chemotherapy. World J. Gastroenterol. 18, 6537-6540.   DOI
22 Moquin, D. M., McQuade, T. and Chan, F. K. (2013) CYLD deubiquitinates RIP1 in the TNFalpha-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One 8, e76841.   DOI
23 Moriwaki, K. and Chan, F. K. (2013) RIP3: a molecular switch for necrosis and inflammation. Genes Dev. 27, 1640-1649.   DOI
24 Moujalled, D. M., Cook, W. D., Okamoto, T., Murphy, J., Lawlor, K. E., Vince, J. E. and Vaux, D. L. (2013) TNF can activate RIPK3 and cause programmed necrosis in the absence of RIPK1. Cell Death Dis. 4, e465.   DOI
25 Nakajima, A., Komazawa-Sakon, S., Takekawa, M., Sasazuki, T., Yeh, W. C., Yagita, H., Okumura, K. and Nakano, H. (2006) An antiapoptotic protein, c-FLIPL, directly binds to MKK7 and inhibits the JNK pathway. EMBO J. 25, 5549-5559.   DOI
26 Nelson, S. M., Ferguson, L. R. and Denny, W. A. (2004) DNA and the chromosome - varied targets for chemotherapy. Cell Chromosome 3, 2.   DOI
27 Nordgren, M., Wang, B., Apanasets, O. and Fransen, M. (2013) Peroxisome degradation in mammals: mechanisms of action, recent advances, and perspectives. Front. Physiol. 4, 145.
28 Okada, M., Adachi, S., Imai, T., Watanabe, K., Toyokuni, S. Y., Ueno, M., Zervos, A. S., Kroemer, G. and Nakahata, T. (2004) A novel mechanism for imatinib mesylate-induced cell death of BCR-ABLpositive human leukemic cells: caspase-independent, necrosis-like programmed cell death mediated by serine protease activity. Blood 103, 2299-2307.   DOI
29 Qian, W., Liu, J., Jin, J., Ni, W. and Xu, W. (2007) Arsenic trioxide induces not only apoptosis but also autophagic cell death in leukemia cell lines via up-regulation of Beclin-1. Leuk Res. 31, 329-339.   DOI
30 Orrenius, S., Nicotera, P. and Zhivotovsky, B. (2011) Cell death mechanisms and their implications in toxicology. Toxicol. Sci. 119, 3-19.   DOI   ScienceOn
31 Rikiishi, H. (2012) Novel Insights into the Interplay between Apoptosis and Autophagy. Int. J. Cell. Biol. 2012, 317645.
32 Kim, A. D., Kang, K. A., Kim, H. S., Kim, D. H., Choi, Y. H., Lee, S. J., Kim, H. S. and Hyun, J. W. (2013) A ginseng metabolite, compound K, induces autophagy and apoptosis via generation of reactive oxygen species and activation of JNK in human colon cancer cells. Cell Death Dis. 4, e750.   DOI   ScienceOn
33 Koster, R., Timmer-Bosscha, H., Bischoff, R., Gietema, J. A. and de Jong, S. (2011) Disruption of the MDM2-p53 interaction strongly potentiates p53-dependent apoptosis in cisplatin-resistant human testicular carcinoma cells via the Fas/FasL pathway. Cell Death Dis. 2, e148.   DOI
34 Kumar, D., Shankar, S. and Srivastava, R. K. (2013) Rottlerin-induced autophagy leads to the apoptosis in breast cancer stem cells: molecular mechanisms. Mol. Cancer 12, 171.   DOI
35 Levine, B., Mizushima, N. and Virgin, H. W. (2011) Autophagy in immunity and inflammation. Nature 469, 323-335.   DOI   ScienceOn
36 Li, Y. Z., Li, C. J., Pinto, A. V. and Pardee, A. B. (1999) Release of mitochondrial cytochrome C in both apoptosis and necrosis induced by beta-lapachone in human carcinoma cells. Mol. Med. 5, 232-239.
37 Martinez, R., Setien, F., Voelter, C., Casado, S., Quesada, M. P., Schackert, G. and Esteller, M. (2007) CpG island promoter hypermethylation of the pro-apoptotic gene caspase-8 is a common hallmark of relapsed glioblastoma multiforme. Carcinogenesis 28, 1264-1268.   DOI   ScienceOn
38 Linkermann, A., Brasen, J. H., De Zen, F., Weinlich, R., Schwendener, R. A., Green, D. R., Kunzendorf, U. and Krautwald, S. (2012) Dichotomy between RIP1- and RIP3-mediated necroptosis in tumor necrosis factor-alpha-induced shock. Mol. Med. 18, 577-586.
39 Lowe, S. W. and Lin, A. W. (2000) Apoptosis in cancer. Carcinogenesis 21, 485-495.   DOI   ScienceOn
40 Markert, C. L. (1968) Neoplasia: a disease of cell differentiation. Cancer Res. 28, 1908-1914.
41 Kang, R., Zeh, H. J., Lotze, M. T. and Tang, D. (2011) The Beclin 1 network regulates autophagy and apoptosis. Cell Death Differ. 18, 571-580.   DOI   ScienceOn
42 Mizushima, N. (2007) Autophagy: process and function. Genes Dev. 21, 2861-2873.   DOI   ScienceOn
43 He, M. X. and He, Y. W. (2013) A role for c-FLIP(L) in the regulation of apoptosis, autophagy, and necroptosis in T lymphocytes. Cell Death Differ. 20, 188-197.   DOI
44 Huang, C., Luo, Y., Zhao, J., Yang, F., Zhao, H., Fan, W. and Ge, P. (2013) Shikonin kills glioma cells through necroptosis mediated by RIP-1. PLoS One 8, e66326.   DOI
45 Huang, X., Dong, Y., Bey, E. A., Kilgore, J. A., Bair, J. S., Li, L. S., Patel, M., Parkinson, E. I., Wang, Y., Williams, N. S., Gao, J., Hergenrother, P. J. and Boothman, D. A. (2012) An NQO1 substrate with potent antitumor activity that selectively kills by PARP1-induced programmed necrosis. Cancer Res. 72, 3038-3047.   DOI
46 Jha, P., Matta, B., Lyzogubov, V., Tytarenko, R., Bora, P. S. and Bora, N. S. (2007) Crucial role of apoptosis in the resolution of experimental autoimmune anterior uveitis. Invest. Ophthalmol. Vis. Sci. 48, 5091-5100.   DOI
47 Hurst, D. R. and Welch, D. R. (2011) Metastasis suppressor genes at the interface between the environment and tumor cell growth. Int. Rev. Cell Mol. Biol. 286, 107-180.   DOI
48 Imre, G., Larisch, S. and Rajalingam, K. (2011) Ripoptosome: a novel IAP-regulated cell death-signalling platform. J. Mol. Cell Biol. 3, 324-326.   DOI
49 Jain, M. V., Paczulla, A. M., Klonisch, T., Dimgba, F. N., Rao, S. B., Roberg, K., Schweizer, F., Lengerke, C., Davoodpour, P., Palicharla, V. R., Maddika, S. and Los, M. (2013) Interconnections between apoptotic, autophagic and necrotic pathways: implications for cancer therapy development. J. Cell. Mol. Med. 17, 12-29.   DOI   ScienceOn
50 Kaczmarek, A., Vandenabeele, P. and Krysko, D. V. (2013) Necroptosis: the release of damage-associated molecular patterns and its physiological relevance. Immunity 38, 209-223.   DOI   ScienceOn
51 Gozuacik, D. and Kimchi, A. (2004) Autophagy as a cell death and tumor suppressor mechanism. Oncogene 23, 2891-2906.   DOI   ScienceOn
52 Hammerova, J., Uldrijan, S., Taborska, E., Vaculova, A. H. and Slaninova, I. (2012) Necroptosis modulated by autophagy is a predominant form of melanoma cell death induced by sanguilutine. Biol. Chem. 393, 647-658.
53 Christofferson, D. E., Li, Y., Hitomi, J., Zhou, W., Upperman, C., Zhu, H., Gerber, S. A., Gygi, S. and Yuan, J. (2012) A novel role for RIP1 kinase in mediating TNFalpha production. Cell Death Dis. 3, e320.   DOI
54 Elmore, S. (2007) Apoptosis: a review of programmed cell death. Toxicol. Pathol. 35, 495-516.   DOI   ScienceOn
55 Christofferson, D. E. and Yuan, J. (2010) Necroptosis as an alternative form of programmed cell death. Curr. Opin. Cell Biol. 22, 263-268.   DOI   ScienceOn
56 Deng, Y., Lin, Y. and Wu, X. (2002) TRAIL-induced apoptosis requires Bax-dependent mitochondrial release of Smac/DIABLO. Genes Dev. 16, 33-45.   DOI   ScienceOn
57 Dy, G. K. and Adjei, A. A. (2002) Novel targets for lung cancer therapy: part I. J. Clin. Oncol. 20, 2881-2894.   DOI   ScienceOn
58 Espert, L., Denizot, M., Grimaldi, M., Robert-Hebmann, V., Gay, B., Varbanov, M., Codogno, P. and Biard-Piechaczyk, M. (2006) Autophagy is involved in T cell death after binding of HIV-1 envelope proteins to CXCR4. J. Clin. Invest. 116, 2161-2172.   DOI   ScienceOn
59 Feoktistova, M., Geserick, P., Kellert, B., Dimitrova, D. P., Langlais, C., Hupe, M., Cain, K., MacFarlane, M., Hacker, G. and Leverkus, M. (2011) cIAPs block Ripoptosome formation, a RIP1/caspase-8 containing intracellular cell death complex differentially regulated by cFLIP isoforms. Mol. Cell 43, 449-463.   DOI   ScienceOn
60 Gaymes, T. J., Shall, S., MacPherson, L. J., Twine, N. A., Lea, N. C., Farzaneh, F. and Mufti, G. J. (2009) Inhibitors of poly ADP-ribose polymerase (PARP) induce apoptosis of myeloid leukemic cells: potential for therapy of myeloid leukemia and myelodysplastic syndromes. Haematologica 94, 638-646.   DOI
61 Gordy, C. and He, Y. W. (2012) The crosstalk between autophagy and apoptosis: where does this lead? Protein Cell 3, 17-27.   DOI   ScienceOn
62 Burman, C. and Ktistakis, N. T. (2010) Autophagosome formation in mammalian cells. Semin. Immunopathol. 32, 397-413.   DOI   ScienceOn
63 Gottesman, M. M. (1993) How cancer cells evade chemotherapy: sixteenth Richard and Hinda Rosenthal Foundation Award Lecture. Cancer Res. 53, 747-754.
64 Gottesman, M. M. (2002) Mechanisms of cancer drug resistance. Annu. Rev. Med. 53, 615-627.   DOI   ScienceOn
65 Bown, S. G., Rogowska, A. Z., Whitelaw, D. E., Lees, W. R., Lovat, L. B., Ripley, P., Jones, L., Wyld, P., Gillams, A. and Hatfield, A. W. (2002) Photodynamic therapy for cancer of the pancreas. Gut 50, 549-557.   DOI   ScienceOn
66 Buzea, C., Pacheco, II and Robbie, K. (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2, MR17-71.
67 Carew, J. S., Nawrocki, S. T., Kahue, C. N., Zhang, H., Yang, C., Chung, L., Houghton, J. A., Huang, P., Giles, F. J. and Cleveland, J. L. (2007) Targeting autophagy augments the anticancer activity of the histone deacetylase inhibitor SAHA to overcome Bcr-Ablmediated drug resistance. Blood 110, 313-322.   DOI   ScienceOn
68 Castano, A. P., Mroz, P. and Hamblin, M. R. (2006) Photodynamic therapy and anti-tumour immunity. Nat. Rev. Cancer 6, 535-545.   DOI   ScienceOn
69 Chen, S. Y., Chiu, L. Y., Maa, M. C., Wang, J. S., Chien, C. L. and Lin, W. W. (2011) zVAD-induced autophagic cell death requires c-Srcdependent ERK and JNK activation and reactive oxygen species generation. Autophagy 7, 217-228.   DOI
70 Amaravadi, R. K. and Thompson, C. B. (2007) The roles of therapyinduced autophagy and necrosis in cancer treatment. Clin. Cancer Res. 13, 7271-7279.   DOI   ScienceOn
71 Boya, P., Gonzalez-Polo, R. A., Casares, N., Perfettini, J. L., Dessen, P., Larochette, N., Metivier, D., Meley, D., Souquere, S., Yoshimori, T., Pierron, G., Codogno, P. and Kroemer, G. (2005) Inhibition of macroautophagy triggers apoptosis. Mol. Cell. Biol. 25, 1025-1040.   DOI   ScienceOn
72 Bai, X., Cerimele, F., Ushio-Fukai, M., Waqas, M., Campbell, P. M., Govindarajan, B., Der, C. J., Battle, T., Frank, D. A., Ye, K., Murad, E., Dubiel, W., Soff, G. and Arbiser, J. L. (2003) Honokiol, a small molecular weight natural product, inhibits angiogenesis in vitro and tumor growth in vivo. J. Biol. Chem. 278, 35501-35507.   DOI   ScienceOn
73 Cho, D. H., Jo, Y. K., Hwang, J. J., Lee, Y. M., Roh, S. A. and Kim, J. C. (2009a) Caspase-mediated cleavage of ATG6/Beclin-1 links apoptosis to autophagy in HeLa cells. Cancer Lett. 274, 95-100.   DOI   ScienceOn
74 Shen, S., Kepp, O., Martins, I., Vitale, I., Souquere, S., Castedo, M., Pierron, G. and Kroemer, G. (2010) Defective autophagy associated with LC3 puncta in epothilone-resistant cancer cells. Cell Cycle 9, 377-383.   DOI
75 Hou, Y. J., Dong, L. W., Tan, Y. X., Yang, G. Z., Pan, Y. F., Li, Z., Tang, L., Wang, M., Wang, Q. and Wang, H. Y. (2011) Inhibition of active autophagy induces apoptosis and increases chemosensitivity in cholangiocarcinoma. Lab. Invest. 91, 1146-1157.   DOI
76 Basu, A. and Haldar, S. (1998) The relationship between BcI2, Bax and p53: consequences for cell cycle progression and cell death. Mol. Hum. Reprod. 4, 1099-1109.   DOI   ScienceOn
77 Yu, L., Alva, A., Su, H., Dutt, P., Freundt, E., Welsh, S., Baehrecke, E. H. and Lenardo, M. J. (2004) Regulation of an ATG7-beclin 1 program of autophagic cell death by caspase-8. Science 304, 1500-1502.   DOI   ScienceOn
78 Kepp, O., Galluzzi, L., Lipinski, M., Yuan, J. and Kroemer, G. (2011) Cell death assays for drug discovery. Nat. Rev. Drug Discov. 10, 221-237.   DOI
79 Cho, Y. S., Challa, S., Moquin, D., Genga, R., Ray, T. D., Guildford, M. and Chan, F. K. (2009b) Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virusinduced inflammation. Cell 137, 1112-1123.   DOI   ScienceOn
80 Galluzzi, L., Kepp, O. and Kroemer, G. (2009) RIP kinases initiate programmed necrosis. J. Mol. Cell Biol. 1, 8-10.   DOI