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Introduction

Ginsenosides, active components of ginseng, have various

biological effects including antidiabetic, antimutagenic,

anti-inflammatory, antioxidant, and anticancer activities [5,

12]. Moreover, ginsenosides regulate the immune activity

via modulation of cell survival or differentiation [24, 34].

Several researchers have shown that some ginsenosides

cannot be absorbed in their native form through the

intestinal barrier, due to their hydrophilicity. Instead,

protopanaxadiol (PD) ginsenosides, including Rb1, Rb2,

and Rc, are metabolized into an absorbable form in the

intestinal tract [1, 3]. Compound K (CK), also known as IH-

901 or M1, is the final bacterial metabolite of PD ginsenosides

in the intestine [23, 30]. Moreover, ginsenosides are

transformed to 20-O-β-D-glucopyranosyl-20(S)-protopanaxadiol
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Ginsenosides, the major active component of ginseng, are traditionally used to treat various

diseases, including cancer, inflammation, and obesity. Among these, compound K (CK), an

intestinal bacterial metabolite of the ginsenosides Rb1, Rb2, and Rc from Bacteroides JY-6, is

reported to inhibit cancer cell growth by inducing cell-cycle arrest or cell death, including

apoptosis and necrosis. However, the precise effect of CK on breast cancer cells remains

unclear. MCF-7 cells were treated with CK (0-70 µM) for 24 or 48 h. Cell proliferation and

death were evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT)

and flow cytometry assays, respectively. Changes in downstream signaling molecules

involved in cell death, including glycogen synthase kinase 3β (GSK3β), GSK3β, β-catenin, and

cyclin D1, were analyzed by western blot assay. To block GSK3β signaling, MCF-7 cells were

pretreated with GSK3β inhibitors 1 h prior to CK treatment. Cell death and the expression of

β-catenin and cyclin D1 were then examined. CK dose- and time-dependently inhibited MCF-7

cell proliferation. Interestingly, CK induced programmed necrosis, but not apoptosis, via the

GSK3β signaling pathway in MCF-7 cells. CK inhibited GSK3β phosphorylation, thereby

suppressing the expression of β-catenin and cyclin D1. Our results suggest that CK induces

programmed necrosis in MCF-7 breast cancer cells via the GSK3β signaling pathway.
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(compound K, CK) by intestinal bacteria, namely Bacteroides

sp., Eubacterium sp., and Bifidobacterium sp. [3] after the oral

administration of which is absorbed into the blood [1]. CK

is produced as a metabolic by-product after the sequential

bioconverting of Rb1, Rd, and F2 in each step by β-glucosidase

secreted by Leuconostoc citreum LH1 [36]. Interest in CK has

increased owing to its anticancer effects against various

cancer cell lines, including hepatoma, gastric carcinoma,

and lung carcinoma cells [14, 27]. However, the mechanisms

of CK-induced cancer cell death remain unclear.

There are three types of cell death: apoptosis, autophagy,

and necrosis [7]. Apoptosis is characterized by DNA

fragmentation, cellular shrinkage, and chromatin condensation

[13]. In contrast, autophagy is characterized by activation

of class III phosphatidylinositol 3-phosphate kinase (PI3K),

generation of reactive oxygen species (ROS), and the

formation of autophagosomes [8, 17]. Necrosis is generally

considered to be an accidental event that occurs without

the activation of signal transduction. Intriguingly, recent

data suggest that necrosis could occur through programmed

signaling, termed programmed necrosis [28, 29].

Glycogen synthase kinase 3β (GSK3β) is associated with

programmed cell death. GSK3β promotes intrinsic apoptosis

mediated by mitochondria, and inhibits extrinsic apoptosis

induced by death receptors [4]. In contrast, suppression of

GSK3β induces necrosis without Bax activation, which is

primarily involved in apoptosis [38]. Recently, data showed

that GSK3β may be associated with both autophagy [35]

and programmed necrosis [16]. Together, these reports

suggest that GSK3β could interact with different signaling

molecules, depending on the type of cell death [26]. 

In the present study, we investigated the anticancer

effects of CK in MCF-7 breast cancer cells by evaluating cell

death and the related signaling pathways that are involved.

We found that CK induces programed necrosis via GSK3β-

mediated signaling.

Materials and Methods

Materials

Ginsenoside CK was purified as previously described [18]. One

hundred micromole of CK was dissolved in dimethyl sulfoxide

(DMSO). 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium

bromide (MTT) and 3-MA were purchased from Sigma-Aldrich

(St. Louis, MO, USA). AnnexinV-FITC was purchased from BD

Biosciences (San Jose, CA, USA) and GSK3β inhibitor VIII was

purchased from Calbiochem (San Diego, CA, USA). Antibodies

against phospho-GSK3β (Upstate Biotechnology, Lake Placid, NY,

USA), GSK3β, β-catenin, cyclin D1 (Cell Signaling Technology,

Danvers, MA, USA), and β-actin (Santa Cruz Biotechnology, Santa

Cruz, CA, USA) were used.

Cell Proliferation Assay 

MCF-7 cells were purchased from the American Type Culture

Collection and maintained in DMEM with 10% fetal bovine serum

and 1% antibiotics (Invitrogen, Grand Island, NY, USA) at 37°C in

a humidified incubator with 5% CO2. The cells were seeded in a

96-well plate at a density of 5 × 103 cells/well and incubated for

24 h. Then, the cells were treated with CK (0, 10, 30, 50, and

70 µM) for the indicated time period. In order to block autophagy,

3-MA (1 mM) was added for 1 h prior to CK (70 µM) treatment.

Then, MTT solution (5 mg/ml) was added to each well at a final

concentration of 0.5 mg/ml for 3 h at 37°C in a humidified

incubator with 5% CO2. The supernatant was removed and MTT

formazan was dissolved with DMSO. The optical density of each

well was measured at 570 nm by a microplate reader (Molecular

Device, Sunnyvale, CA, USA).

Cell Cycle Analysis 

For the detection of cell cycle, MCF-7 cells were seeded in a 6-

well plate at a density of 3 × 105 cells/well and incubated for 24 h

in a humidified incubator with 5% CO2 at 37°C. The cells were

treated with CK (0, 10, 30, 50, and 70 µM) for the indicated time

period. Then, the cells were trypsinized, washed twice in

phosphate-buffered saline (PBS), and fixed with 70% ethanol at

4°C overnight. After centrifugation (800 ×g, for 10 min at 4°C), the

supernatant was discarded. The cells were stained with PI

solution (0.05% Triton-X 100, 10 µg/ml RNase, and 10 µg/ml PI in

PBS). Then, the DNA content was measured by flow cytometry

(FACSCalibur) with Cell Quest software (BD Biosciences, Sparks,

MD, USA). All flow cytometric data were analyzed by Flowjo

software (Tree Star, San Carlos, CA, USA).

Annexin V/PI Staining Assay

MCF-7 was seeded in a 6-well plate at a density of 3 × 105 cells/well

and incubated for 24 or 48 h at 37°C in a humidified incubator

with 5% CO2. The cells were treated with CK (0, 10, 30, 50, and

70 µM) for the indicated time periods. For blocking programmd

necrosis, GSK3β inhibitor VIII (GSK3βi, 20 µM) was pretreated for

1 h before CK (70 µM) treatment. Floating and attached cells were

collected, washed twice with PBS, and stained with Annexin V-

FITC and PI as described by the manufacturer’s instructions (BD

Biosciences, Sparks, MD, USA). The samples were detected by

flow cytometry with Cell Quest software (BD Biosciences, Sparks,

MD, USA). All flow cytometric data were analyzed by Flowjo

software (Tree Star).

 

Western Blot Analysis

MCF-7 cells were seeded in a 35 mm dish at a density of 3 × 105

cells/dish in a humidified incubator at 5% CO2 and 37°C. The cells

were treated with CK (0, 10, 30, 50, and 70 µM) for the indicated

time periods. The cells were washed twice with cold PBS. Then,

the cells were lysed with cold RIPA lysis buffer containing 150 mM
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NaCl, 1% NP-40, 0.5% deoxycholate, 0.1% SDS, 50 mM Tris-HCl

(pH 7.4), and protease inhibitor cocktail (Roche, Mannheim,

Germany) and incubated on ice for 30 min. After centrifugation

(12,000 ×g for 10 min at 4°C), soluble proteins were obtained and

the concentration of protein was determined by Bradford assay

(Bio-Rad Laboratories, Hercules, CA, USA). Protein samples

(20 µg) were separated by 10~12% SDS-PAGE and transferred to

a polyvinylidene difluoride transfer membrane (Amersham

Bioscience, Piscataway, NY, USA). The membrane was blocked

with 5% skim milk in TBST (0.1 M Tris, 0.9% NaCl, and 0.1%

Tween 20) at room temperature for 1 h. The membrane was washed

twice with PBS and incubated with the appropriate primary

antibody at 4°C overnight. After washing with PBS three times,

the membrane was incubated for 1 h with a horseradish peroxidase

(HRP)-conjugated goat anti-mouse IgG or HRP-conjugated goat

anti-rabbit IgG secondary antibody (SantaCruz Biotechnology) for

1 h at room temperature. Expected protein bands were visualized

with the enhanced chemiluminescence system (GE Healthcare,

Buckinghamshire, UK).

Statistical Analysis

All data were expressed as means ± standard deviation (SD).

Statistical significance was analyzed by Student’s t-test or one-

way ANOVA using Prism ver. 4.0 (GraphPad Software, Inc., San

Diego, CA, USA). The significance of differences was considered

statistically significant at p < 0.05.

Results

CK Inhibits the Proliferation of MCF-7 in a Time- and

Dose-Dependent Manner

To examine the anticancer effects of CK, MCF-7 cells

were treated with CK (0, 10, 30, 50, and 70 µM) and cell

proliferation was assessed by MTT assay. CK significantly

(p < 0.05-0.01) inhibited the proliferation at 50 and 70 µM

for 24 and 48 h (Figs. 1A and 1B). CK at 50 and 70 µM

resulted in 21% and 59% inhibition at 24 h, and 35% and

88% at 48 h, respectively, compared with the control group.

These results suggest that CK has an inhibitory effect on

the proliferation in time- and dose-dependent manner.

Apoptosis and Autophagy Are Not Induced by CK in

MCF-7 Cells

To examine whether CK induces apoptosis of MCF-7 cells,

we measured the peak of sub G1 using flow cytometry

after PI staining. The cells treated with CK showed a

similar percentage of the sub G1 compared with that of the

control (Figs. 2A and 2B). To further validate this result, we

examined the expression pattern of PARP-1, which is

known to be cleaved in apoptotic cells [33]. As a result,

PARP-1 was not cleaved in cells treated with CK, suggesting

that CK did not induce apoptosis in MCF-7 cells. It was

further noted that neither sub G1 nor PARP-1 expression

was different at 24 and 48 h compared with the control

(data not shown).

Autophagy occurs with degradation and recycling of

cellular components and it is often associated with cellular

stress and eventual cell death. To investigate autophagy,

the cells were treated with CK (70 µM) alone or together

with 3-MA (an autophagy inhibitor). The cells treated with

CK alone showed 39% of proliferation (i.e., 61% inhibition)

at 24 h, and the cells pretreated with 1 mM of 3-MA at 1 h

prior to the administration of CK showed 34% of proliferation

(i.e., 66% inhibition) when compared with those of control

(Fig. 2C). Taken together, these results suggest that CK

induced neither apoptosis nor autophagy in MCF-7 cells.

Inhibition of GSK3β Suppressed the Programmed Necrosis

in MCF-7 Cells Treated with CK

Next, in order to further investigate the type of cell death

responsible for the inhibition of MCF-7 proliferation, the

cells treated with CK were examined by using Annexin V

Fig. 1. Inhibitory effect of CK on the proliferation of MCF-7 cells. 

MCF-7 cells were seeded in a 96-well plate at a density of 5 × 103 cells/well and treated with CK (0, 10, 30, 50, and 70 µM). The proliferation was

measured by MTT assay after (A) 24 h and (B) 48 h. The data are expressed as the mean ± SD from triplicate experiments. * p < 0.05, ** p < 0.01.

Experimental results are the representative of three independent experiments.
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and PI. Interestingly, necrosis (Annexin V-/PI+ region) was

increased in CK-treated cells when compared with the

control (Fig. 3A), suggesting that the reduced cell proliferation

in the cells treated with CK is attributed to necrosis.

There is some evidence suggesting that GSK3β is

involved in cell fate, including its survival, necrosis, and

programmed necrosis [15, 16]. To examine whether CK-

induced cell death was mediated via GSK3β, the cells were

pretreated with GSK3β inhibitor VIII (GSK3βi) followed by

CK treatment, and necrosis was examined by using flow

cytometry. The results showed that necrosis in the cells

pretreated with GSK3βi and then treated with CK were

decreased when compared with the cells treated with CK

alone (Fig. 3B). These results strongly suggested that GSK3β

is involved in the CK-mediated cell death of MCF-7 cells.

CK Induces Programmed Necrosis via GSK3β in MCF-7

Cells

To further investigate the exact cause of CK-induced cell

death in MCF-7, the cells were treated with CK and the

expression of phospho-GSK3β, β-catenin, and cyclin D1

was examined by western blot assay. Phosphorylation of

GSK3β and the expression of β-catenin and cyclin D1 were

all decreased by CK treatment (Fig. 4A). As expected, the

expression of β-catenin and cyclin D1 in the cells pretreated

with GSK3βi was higher than that of cells treated with CK

alone (Fig. 4B). Taken together, CK induced programmed

necrosis of MCF-7 cells via GSK3β.

Discussion

CK is known to exert anticancer effects [14]. However, its

mechanism of action remains unclear. The aim of the study

was to evaluate the anticancer effects of CK in the human

breast cancer cell line MCF-7, focusing particularly on

programmed necrosis and its associated signaling pathways.

We investigated whether CK (i) has anticancer activity in

MCF-7 cells and (ii) induces cell death via GSK3β. Our results

showed that CK dose- and time-dependently inhibited MCF-7

cell proliferation and reduced GSK3β phosphorylation. 

CK has been suggested to induce apoptosis and autophagy

in human cancer cells [20, 21]. Nevertheless, our study

revealed that CK did not suppress MCF-7 cell proliferation

via these pathways. It is important to note that the previous

Fig. 2. CK induced neither apoptosis nor autophagy in MCF-7 cells. 

(A) MCF-7 cells were treated with CK (0, 10, 30, 50, and 70 µM) for 24 h, and then stained with PI, and apoptosis was detected by using flow

cytometry. (B) The cells were treated with 70 µM CK for 8 or 16 h. Then, the expression of PARP-1 level was examined by western blot assay. (C)

MCF-7 cells were treated with 1 mM 3-MA, an autophagy inhibitor, 1 h prior to the treatment of CK (70 µM) for 24 h. The proliferation was

measured by MTT assay. The data, expressed as the mean ± SD of three separate experiments, were analyzed by one-way ANOVA. Means with

different superscripts are significantly different at p < 0.05.
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report suggesting apoptotic MCF-7 cell death following CK

treatment used DNA fragmentation and cell viability

assays, which are limited in defining the type of cell death.

Moreover, CK has shown inhibition activity against

various cancers, not only breast cancer. CK induced the

apoptosis of colorectal cancer through the inhibition of

Fig. 3. Reduction of CK-induced necrosis in MCF-7 cells by GSK3β inhibitor VIII. 

(A) MCF-7 cells were treated with CK (0, 10, 30, 50, and 70 µM) for 24 or 48 h. The cells were stained with Annexin V and PI. Apoptosis and

necrosis were measured in the cells by flow cytometry. (B) MCF-7 cells were pretreated with GSK3βi at 1 h before CK treatment (70 µM) for 24 or

48 h. Then, the cells were stained with Annexin V and PI and measured by flow cytometry. The consistency of all results were confirmed more

than three times. 

Fig. 4. Induction of programmed necrosis in MCF-7 cells treated with CK via GSK3β. 

(A) MCF-7 cells were treated with CK (0, 10, 30, 50, and 70 µM) for 16 h, and the expression levels of phospho-GSK3β, β-catenin, and cyclin D1

were measured by western blot assay. (B) MCF-7 cells were pretreated with GSK3βi before CK treatment (70 µM) for 6 h in β-catenin or 12 h in

cyclin D1, respectively. The expression of β-catenin and cyclin D1 was measured by western blot assay. β-Actin was used as a loading control. The

consistency of all results was confirmed more than three times.
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histone deacetylase activity [19] and the down-regulation

of cdc2 and cdc25A that arrested the G1 phase cell cycle

[41]. For lung cancer, CK was effective for apoptosis by

improving p53 expression [25]. Nasopharyngeal carcinoma

was inhibited by CK through apoptosis-inducing factor

activation [22].

In the steady state, PARP-1 plays a homeostatic protective

and regulatory role, as it is associated with the DNA repair

process [11, 32]. During apoptosis, PARP-1 is cleaved by

caspases, which leads to the inactivation of poly(ADP-

ribosyl)ation [33]. However, PARP-1 levels are increased in

programmed necrosis [37]. Indeed, cleavage of PARP-1

was not observed, whereas its expression was increased in

the present study. It has also been reported that PARP-1-

dependent programmed necrosis relies on AIF [2]. Our

results indicated that CK induces high AIF expression

levels (data not shown), suggesting that CK induces

programmed necrosis. 

GSK3β, a serine threonine kinase, phosphorylates a

number of proteins with various cellular functions, thereby

regulating metabolism, structure, transcription, and gene

expression [10]. GSK3β has numerous substrates, including

metabolic and signaling proteins, structural proteins, and

transcription factors [10]. Among them, β-catenin, cyclin

D1, and c-myc are the oncogenic proteins. β-Catenin is

phosphorylated by GSK3β in the Wnt signaling pathway

[40]. Furthermore, Wnt/β-catenin signaling is involved in

the development of cancer [39] by enhancing proliferation

[31]. A number of oncogenic proteins are degraded via

GSK3β-mediated phosphorylation [6, 9, 40], indicating that

GSK3β also acts as a tumor suppressor. Moreover, GSK3β

is involved in regulating various functions, including cell

survival and death [15]. In our study, CK treatment induced

GSK3β dephosphorylation, and reduced the expression of

β-catenin and cyclin D1, suggesting that CK is associated

with GSK3β-mediated programmed necrosis.

The present study demonstrated that CK induced

programmed necrosis via the dephosphorylation and

activation of GSK3β, which coincided with the decreased

expression of β-catenin and cyclin D1. Understanding the

involvement and the precise role of GSK3β signaling could

become important for the development of therapeutic

strategies to improve the efficacy of anticancer agents.

Therefore, the present study provides a potential target for

future investigation in breast cancer therapy. 
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