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Fas-associated protein with death domain (FADD), an adaptor 
that bridges death receptor signaling to the caspase cascade, is 
indispensible for the induction of extrinsic apoptotic cell death. 
Interest in the non-apoptotic function of FADD has greatly 
increased due to evidence that FADD-deficient mice or 
dominant-negative FADD transgenic mice result in embryonic 
lethality and an immune defect without showing apoptotic 
features. Numerous studies have suggested that FADD regulates 
cell cycle progression, proliferation, and autophagy, affecting 
these phenomena. Recently, programmed necrosis, also called 
necroptosis, was shown to be a key mechanism that induces 
embryonic lethality and an immune defect. Supporting these 
findings, FADD was shown to be involved in various necroptosis 
models. In this review, we summarize the mechanism of 
extrinsic apoptosis and necroptosis, and discuss the in vivo and 
in vitro roles of FADD in necroptosis induced by various stimuli. 
[BMB Reports 2012; 45(9): 496-508]

INTRODUCTION

Fas-associated protein with death domain (FADD) is a critical 
adaptor protein for death receptor (DR)-mediated apoptosis. 
FADD is composed of two domains called the death domain 
(DD) and death effector domain (DED). The DD of FADD binds 
to the DD of the death receptor and FADD recruits procaspase-8 
through the DED-DED interaction, forming a death-inducing sig-
naling complex (DISC), where procaspase-8 is activated by 
self-cleavage. Active caspase-8 cleaves downstream effector cas-
pases such as caspase-3, -6, and -7, inducing apoptosis.
　Interestingly, FADD deficiency results in embryonic lethality, 
displaying a defect in immune homeostasis and immune cell 
proliferation despite the defect in inducing apoptosis. In addi-
tion, FADD is also implicated in non-apoptotic functions such as 

cell cycle progression, proliferation, autophagy, inflammation 
and innate immunity (1, 2). Particularly, FADD phosphorylation 
at Ser194 (pFADD) by several kinases is associated with its nu-
clear localization and cell cycle regulation (3-8). Although 
FADD and pFADD are often overexpressed in various tumors, 
their functions in cancer development or chemotherapy- sensi-
tivity are still controversial (9-14).
　Recent strong evidence from in vivo mice studies suggested 
negative roles of FADD in RIP1- and RIP3-dependent necroptosis 
(15-18). DR-mediated caspase-8 activation requires FADD, and 
leads to the cleavage of RIP1, RIP3, and CYLD, preventing nec-
roptosis (19-22). Thus, FADD deficiency is thought to inhibit cas-
pase-8 and subsequent apoptosis, but activate necroptosis. Since 
necroptosis can be initiated by various stimuli in a variety of cell 
types independently of DRs, the exact mechanisms and functions 
of FADD require further investigation. This review focuses on 
the recent discoveries about the roles of FADD in apoptosis and 
necroptosis in various models, and we refer the reader to two 
comprehensive reviews of the diverse functions of FADD (1, 2). 

EXTRINSIC APOPTOSIS

Molecular mechanism of extrinsic apoptosis
Extrinsic apoptosis, which is triggered by the extracellular signals 
that activate the death receptor family, is distinguished from in-
trinsic apoptosis, which is induced by intracellular signals such 
as DNA damage, oxidative stress, and nutrient deprivation (23). 
Extrinsic apoptosis is initiated by the binding of specific ligands 
such as tumor necrosis factor α (TNFα), Fas ligand (FasL), and tu-
mor necrosis factor-related apoptosis-inducing ligand (TRAIL) to 
their corresponding receptors called ‘death receptors’ (DRs) (24). 
DR is a member of the TNF receptor superfamily and specifically 
contains a conserved cytosolic death domain (DD) (25). The 
eight kinds of DRs have different amino acid sequences that de-
termine ligand specificity, and they can be divided into two 
groups according to the cytosolic adaptor protein that makes a 
distinct complex (24, 26, 27).
　The first group includes CD95/Fas, DR4/TRAIL-R1, and DR5/ 
TRAIL-R2, all of which recruit death-inducing signaling complex 
(DISC) composed of FADD and procaspase-8 (28). Fas and 
DR4/5 are activated by the ligation of the specific ligands FasL 
and TRAIL, respectively, and bind to the DD of FADD, a pivotal 
adaptor protein, through the DD domain. Then, DED of FADD 
binds to DED of procaspase-8 and -10 to construct the DISC. The 
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DISC facilitates auto-proteolytic cleavage of procaspase-8 and 
-10, which confers their enzymatic activity and release (2). 
Activated caspase-8 and -10 lead to proteolytic stimulation of 
downstream effector caspase-3, -6, and -7, which can cleave in-
tracellular substrates such as lamin A, poly (ADP-ribose) poly-
merase (PARP), and inhibitor of caspase-activated DNase (ICAD) 
to induce apoptotic circumstances including cell shrinkage, nu-
clear fragmentation, apoptotic DNA fragmentation, and ulti-
mately, cell death (24). The series of events described above is 
sufficient to induce apoptotic cell death in certain cell types 
called type I cells, such as lymphocytes and thymocytes, but is 
insufficient in type II cells, including hepatocytes and pancreatic 
β cells, because of the relatively low levels of DISC in spite of 
comparable levels of the DISC components. (29-32). Type II cells 
require a mitochondria-dependent pathway to amplify a DR- 
mediated apoptotic signaling. Activated caspase-8 cleaves 
pro-apoptotic protein BID as well as effector caspases to gen-
erate truncated BID (tBID), which binds to pro-apoptotic proteins 
BAX and BAK, resulting in the leakage of the mitochondrial 
membrane and the release of cytochrome c and SMAC/DIABLO 
(33, 34). Released cytochrome c forms an apoptosome with pro-
caspase-9 and Apaf-1 to cleave and activate caspase-9, which in 
turn stimulates caspase-3, -6, and -7 (24). SMAC/DIABLO, mean-
while, facilitates apoptosis by suppressing inhibitors of apoptosis 
proteins (IAPs) (35, 36).
　The second group of DRs including TNFR1, DR3, DR6, and 
EDAR recruit TRADD for an adaptor protein that links DRs to 
TNF receptor-associated factors 2,5 (TRAF2,5), receptor-interact-
ing protein kinase (RIP1 or RIPK1), and cellular inhibitor of apop-
tosis (cIAPs), forming a signaling complex called ‘complex I’ (24, 
37). Upon the ligation of DR with their specific ligands, complex 
I is assembled close to the plasma membrane to stimulate mi-
togen-activated protein kinase/c-Jun N-terminal kinases (MAPK/ 
JNK) involved in cell survival, proliferation or apoptosis (38-40). 
Complex I also stimulates nuclear factor kappa (NF-κB) pathway, 
facilitating cell survival and inflammatory signal (38). Complex 
I-mediated NF-κB stimulation is caused by cIAP-induced 
K63-linked polyubiquitination of RIP1 and linear ubiquitin chain 
assembly complex (LUBAC)-mediated linear ubiquitination of 
RIP1, providing a scaffold for the recruitment of TGF-beta-acti-
vated kinase 1 (TAK1) binding protein 2 and 3 (TAB2 and 3), 
which finally activates TAK1 (41-43). IKKγ/NEMO also binds to 
the polyubiquitin chain of RIP1, bringing the whole IKK 
complex. Then, active TAK1 phosphorylates and stimulates 
IKKβ, resulting in the phosphorylation and subsequent degrada-
tion of IκB, which sequesters NFκB in the cytosol (42). 
Subsequently, unconstrained NFκB enters the nucleus to turn on 
the transcription of its target gene encoding anti-apoptotic, 
pro-survival, and inflammatory factors. The second group of DRs 
can also form a cytosolic complex II. RIP1 deubiquitinating en-
zymes such as cylindromatosis (CYLD) remove K63-linked poly-
ubiquitination, leading to internalization of receptor complex 
(38, 44). It is unclear whether the deubiquitination function of 
A20, ubiquitin-specific protease 21 (USP21) and cezanne 

(OTUB7B) are also able to induce complex II formation (45-48). 
The conformation changes of complex I after receptor internal-
ization result in two kinds of cytosolic complex II (i.e., 
TRADD-dependent complex IIA and RIP1-dependent complex 
IIB), both of which can initiate apoptosis (38, 44). TRADD re-
cruits FADD and caspase-8, forming complex IIA, where cas-
pase-8 is activated and apoptosis is initiated (49, 50). Complex 
IIB is composed of RIP1 and FADD-caspase-8 and is negatively 
regulated by cIAPs since polyubiquitinated RIP1 cannot be in-
corporated into complex IIB. Therefore, IAP antagonist, includ-
ing smac mimetics that induce the proteasomal degradation of 
IAPs, can promote complex II formation and subsequent apopto-
sis (51, 52). 

Regulation of extrinsic apoptosis
Several regulatory machineries are involved in the DR-mediated 
extrinsic apoptosis pathway. Cellular FLICE-like inhibitory pro-
teins (cFLIPs) are crucial regulators of DR signaling (See ref. 53 
for Review). All of the cFLIP isoforms, including cFLIP long 
(cFLIPL), cFLIP short (cFLIPS), and cFLIP raji (cFLIPR), contain two 
DED domains and bind to FADD via DED-DED interaction (53). 
All cFLIPs prevent DISC formation and consequent apoptosis by 
competing with caspase-8 for binding to FADD (54). The role of 
cFLIPL on apoptosis, however, is still controversial. cFLIPL also 
contains a caspase-8-like domain and forms a heterodimer with 
caspase-8, resulting in partial caspase-8 autoprocessing that is 
sufficient to generate the p43/41 and the p12 fragments (55, 56). 
The levels of cFLIP are regulated by numerous pathways. For in-
stance, JNK activated by TNFα can phosphorylate and stimulate 
the E3 ubiquitin ligase, Itch, inducing polyubiquitination and 
proteasomal degradation of cFLIP (57). Moreover, the phosphati-
dylinositol 3-kinase/Akt pathway can upregulate cFLIP ex-
pression (58).
　Various post-translational modifications (PTMs) are also im-
plicated in the regulation of DR-mediated extrinsic apoptosis. 
DRs can be directly modified by several PTMs (59, 60). For ex-
ample, palmitoylation of Fas/CD95 facilitates the formation of 
high molecular weight DISC, which includes FADD and cas-
pase-8, resulting in caspase-8 cleavage and apoptotic cell death 
(60). O-glycosylation of TRAIL-R1/2 results in improved receptor 
clustering and subsequent DISC formation, causing better sensi-
tivity to TRAIL (61). Furthermore, cFLIP is also regulated by vari-
ous PTMs including nitrosylation, ubiquitylation, and phosphor-
ylation (62-66). For example, phosphorylation of cFLIP isoform 
by protein kinase C (PKC) does not affect its interaction with the 
DISC. On the other hand, phosphorylation of cFLIPS induces sta-
bilization of cFLIPS by reducing polyubiquitination, enhancing its 
anti-apoptotic function (62). S-receptor kinase (Srk) phosphor-
ylates caspase-8, prevents procaspase-8 cleavage, and impairs 
DRs Fas-mediated apoptosis (67). Caspase-8/10-associated RING 
proteins (CARPs) suppress caspase-8 and -10 via ubiquitin-medi-
ated degradation. Therefore, down-regulation of CARPs enhan-
ces DR-mediated apoptosis in human lung cancer cells (68). 
CARP2 also mediates K48-linked polyubiquitination and degra-
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dation of RIP1, suppressing TNFα-induced NFκB activation (69). 
In addition to the molecules described above, many proteins in-
volved in DR signaling such as IAPs, effector caspases, and the 
Bcl-2 family (e.g., Bax, Bid, and Bcl-2) are also modulated by 
mono- or poly-ubiquitination (70, 71). Although FADD is phos-
phorylated by several kinases, it is not clear whether phosphor-
ylation influences FADD activity toward extrinsic apoptosis (3-8). 
Rather, it seems to be involved in cell cycle regulation (3-8). 
Recently, we determined that FADD turnover is mediated by 
MKRN1-mediated ubiquitination, affecting DR-induced apopto-
sis in vitro and in vivo (72). 

PROGRAMMED NECROSIS (NECROPTOSIS)

Introduction to necroptosis
For a long time, necrosis has been regarded as an uncontrolled 
cell death. However, in the last 20 years, there has been a lot of 
evidence indicating that necrosis is a tightly regulated mecha-
nism. The idea that necrosis is regulated is based on the finding 
that TNFα can trigger both apoptotic cell death and necrotic cell 
death (73). Several studies have shown that Fas or TNFR activa-
tion leads to necrotic cell death upon caspase inhibition in vari-
ous cell lines including L929 mouse fibroblasts, mouse embry-
onic fibroblasts (MEFs), and Jurkat T cells (19, 74, 75). In addi-
tion, the serine-threonine kinase RIP1 has been identified as an 
essential mediator of caspase-independent necrosis (19, 74). 
There is an accumulation of evidence in support of regulated 
mechanisms and the identification of a chemical inhibitor, ne-
crostatin-1 (nec-1), that specifically inhibits RIP1 kinase activity, 
leading to ‘programmed necrosis’ or ‘necroptosis’ (19, 45, 76, 
77). Interestingly, the kinase activity of RIP1 (RIPK1) is indis-
pensible for inducing necroptosis, but it is dispensable for NFκB 
activation (49, 78, 79). Recently, RIP3 (RIPK3, a member of RIP 
kinase family) was reported to be an indispensible factor for nec-
roptosis (78-80). DRs including Fas (19), TNFR1/2 (77), and 
TRAIL-R1/2 (73) are well-known to induce necroptosis. 
Pathogen-associated molecular patterns (PAMPs) including lip-
opolysaccharide (LPS) and double-stranded RNA (dsRNA) also 
can induce necrotic cell death (80-83). Toll-like receptors (TLRs) 
activated by LPS, a component of gram-negative cell walls, 
poly(I:C) and viral dsRNA also trigger necroptosis in various cell 
types such as MEF, T cells, macrophage, and L929 cells (80-83). 
In addition to PAMPs, damaged-associated molecular patterns 
(DAMPs) including N-formylated peptides and mitochondrial 
DNA, which are released with necrotic cell death, trigger 
necroptosis. High-mobility group box 1 (HMGB1) induces septic 
shock by interacting with receptor for advanced glycation 
end-product (RAGE) or TLR4 (84). 

Mechanism of TNF-induced necroptosis
Mechanisms of necroptosis are extensively studied using a 
TNFα-induced necroptosis model. TNFα-induced necroptosis is 
initiated by the binding of ligand to TNFR1. Activation of TNFR1 
recruits complex I, leading to a prosurvival pathway such as the 

NF-kB pathway (41, 85). Similar to apoptosis induction, nec-
roptosis also requires the removal of the K63-linked poly-
ubiquitin chain of RIP1, which provides a docking site for 
TAK/TAB and IKK complexes and induces the NF-kB pathway 
(42, 43, 85). CYLD is required for necroptosis induction by deu-
biquitinating RIP1, whereas the involvements of other deubiqui-
tinating enzymes that trigger RIP1 deubiquitination such as A20, 
USP21 and cezanne in necroptosis induction are currently un-
known (46-48, 86). Inhibition of cIAP function, which is critical 
for RIP1 polyubiquitination, by genetic deletion or pharmaco-
logical methods, has been reported to sensitize cells to nec-
roptotic cell death by preventing RIP1 K63-linked ubiquitination 
(49, 78, 87-90). RIP1 deubiquitination leads to the formation of 
complex II, which is composed of TRADD, FADD, RIP1 and cas-
pase-8 (91). Recently, RIP3 was identified as an essential media-
tor of necroptosis using screening methods (78-80). Most im-
portantly, RIP3-expressing cells have an ability to undergo nec-
roptosis, whereas RIP3-deficient cells do not (78). Furthermore, 
RIP3-deficient MEFs and cells depleted of RIP3 showed resist-
ance to necrotic cell death (78-80). Mechanistically, RIP3 is re-
cruited to a signaling complex containing RIP1, FADD, and cas-
pase-8 in response to necrotic stimuli (78, 79). Phosphorylation 
of RIP1 at Ser 161 and RIP3 at Ser 199 occur after necrotic stim-
uli, and these phosphorylations are considered essential for ne-
crosome assembly and activation (78). RIP1 can be phosphory-
lated by RIP3 or RIP1 itself, whereas RIP3 is known to be phos-
phorylated by itself. However, it remains unclear whether other 
kinases are involved in RIP1/RIP3 phosphorylation and ne-
crosome activation (44, 79). The crucial role of RIP1 kinase ac-
tivity on necroptosis has been implicated in many studies (19, 
49), and is supported by the critical roles of necrostain-1, which 
specifically inhibits RIP1 kinase activity and prevents necrosome 
assembly and necroptosis (19, 78, 79, 92, 93). 

Regulation of necroptosis by caspase-8 activity
In 1998, it was reported that the pharmacological inhibition of 
caspase activity sensitizes TNF-mediated necrotic cell death in 
L929 cells (94). From this finding, the concept of apoptosis 
blocking necrosis by caspase activity has been accepted as an es-
tablished theory. Indeed, zVAD-fmk, a pan-caspase inhibitor, has 
been widely used to induce necroptosis in a variety of cell lines 
as well as mice models (93, 94). Among the caspases, caspase-8 
is responsible for the transition from apoptosis to necroptosis 
(93). Caspase-8-deficient Jurkat cell lines underwent necroptosis 
instead of apoptosis upon Fas and TNFR stimulation. Recent in 
vivo work showed that caspase-8-deficient mice have significant 
necroptotic death, leading to embryonic lethality, also support-
ing the roles of caspase-8 in necroptosis suppression. T cell- or 
intestinal epithelial cell-specific deletion of caspase-8 in mice al-
so exhibited severe necroptotic features, inducing immunode-
ficiency or terminal ileitis, respectively (95, 96).
　The critical roles of caspase-8 on necroptosis are known to in-
duce the cleavage of RIP1 and RIP3 (20, 21). Therefore, cells 
treated with caspase inhibitor or a deficient in caspase-8 increase 
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Fig. 1. The role of FADD in Fas and TRAIL signaling. (A) FADD 
is required for both apoptosis and necroptosis induced upon Fas 
and TRAIL-R activation. FADD is an essential adaptor protein that 
links death receptor for FasL or TRAIL to caspase-8, thereby in-
ducing DISC formation. These complexes have an ability to in-
duce both apoptosis and necroptosis.

the RIP1-RIP3 complex formation as well as necroptosis (22, 78, 
79). In addition, CYLD was recently identified as a target of cas-
pase-8 and a critical mediator. Caspase-8-mediated CYLD cleav-
age at Asp215 prevents necroptosis, whereas expression of mu-
tant CYLD (D215A), which is resistant to caspase-8-mediated 
cleavage, into CYLD -/- MEF enhances necrosome formation and 
necroptosis (22).

Execution of necroptosis
Mitochondrial reactive oxygen species (ROS) has a pivotal role 
in necrotic cell death in certain cell types (97). TNF stimulation 
is known to activate JNK-dependent ROS production (98). 
Ferritin degradation by JNK activation increases the labile iron 
pool, thereby enhancing ROS production (98). RIP1-deficient 
MEFs failed to elevate the labile iron pool and induce cell death 
upon TNF stimulation, suggesting a critical role for RIP1 on 
TNF-induced ROS production and necrosis (99). However, the 
detailed molecular mechanism by which RIP1 affects ROS pro-
duction is unclear.
　Activation of necrosome complex also promotes ROS pro-
duction by directly activating metabolic pathways. RIP3 physi-
cally interacts with and activates several key metabolic enzymes 
including GLUL, GLUD1 and PYGL to induce ROS production 
and necroptosis upon TNFα activation (80). GLUL and GLUD1, 
which convert glutamate to α-ketoglutarate, induce glutamate 
depletion, causing glutaminolysis. An increase in glutaminolysis 
results in ammonia accumulation, leading to ROS production to 
detoxify the ammonia in mitochondria (100). PYGL activation 
triggers the breakdown of glycogen to glucose-1-phosphate 
(G1P), which can be converted to its isomer, glucose-6-phos-
phate (G6P). Methyglyoxal generated by G6P covalently binds to 
many proteins, producing ROS by activating NAD(P)H oxidase 
(101). In addition to these mechanisms, induction of a respira-
tory burst by these enzymes contributes to over-production of 
ROS and necroptosis (102).
　ATP depletion has also been implicated as an executor of 
necroptosis. During apoptosis, caspase cleaves and inactivates 
poly (ADP-ribose) polymerase-1 (PARP-1), preventing ATP 
depletion. Inhibition of protein translation and proteasomal deg-
radation upon apoptosis activation also suppresses ATP deple-
tion (103-105). In contrast, ROS-mediated DNA damage acti-
vates PARP-1, inducing the depletion of ATP and NAD during 
TNF-mediated necroptosis (106).
　Lysosomal membrane permeabilization (LMP) has also been 
shown to be an executor of necroptosis. Over-produced ROS at-
tacks polyunsaturated fatty acids, and generates toxic aldehydes 
(4-hydroxynonenal). This toxic material modifies many cellular 
proteins and destabilizes the lipid components of membranes 
(107). 4-hydroxynonenal-mediated modification leads to mi-
tochondrial malfunction, including blockage of oxidative phos-
phorylation and ATP synthesis, inner membrane permeabiliza-
tion, mitochondrial transmembrane potential dissipation and re-
duction of the Ca2+ buffering system (108). In addition to 
ROS-mediated LMP, treatment with TNF in L929 cells triggers 

SMases activation, which converts ceramide to sphingosine, a 
known LMP inducer (109, 110). However, the detailed molec-
ular mechanism underlying necroptosis remains to be elucida-
ted.
　Recently, two direct target of RIP3 kinase involving nec-
roptosis execution have been identified. Phosphorylation of 
mixed lineage kinase domain like protein (MLKL) by RIP3 is 
shown to be crucial for TNF- induced necroptosis (111). PGAM5 
is recruited to the RIP1-RIP3 necrosome complex and is phos-
phorylated by RIP3. PGAM5-RIP1-RIP3 complex also recruits 
and activates Drp1 by inducing dephosphorylation. Drp1 de-
phosphorylation eventually leads to mitochondrial fragmentation 
and induces necroptosis (112).

THE ROLES OF FADD ON APOPTOSIS AND 
NECROPTOSIS IN VITRO AND IN VIVO

The roles of FADD on DR-mediated apoptosis and necroptosis
DR activation is the best known pathway for activation of nec-
roptosis as well as apoptosis. Being an essential adaptor protein 
that links DRs with caspase-8, FADD is considered to be critical 
for death receptor-induced apoptosis. As FADD is a direct and 
essential adaptor for Fas and TRAIL-R, FADD deficiency abol-
ished Fas- or TRAIL-R-induced apoptosis and necroptosis (Fig. 1) 
(19). Supporting this, FADD-deficient mouse embryonic fibro-
blasts and thymocytes were resistant to Fas-induced apoptosis 
(113, 114). Furthermore, FADD has been shown to be a critical 
factor for TRAIL-induced apoptosis using FADD-deficient Jurkat 
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Fig. 2. Proposed model for FADD regulation of apoptosis and necroptosis upon TNFR activation. (A) TNFR activation recruits several adap-
tor proteins including TRADD, RIP1, and TRAF2/5, but not FADD, and forms a complex I to activate the NF-kB pathway. (B) Upon RIP1 
deubiquitination, RIP1 forms cytosolic complex II by recruiting FADD, caspase-8, and RIP3. (C) Both FADD and caspase-8 are required to 
mediate apoptosis by activating effector caspases and suppress necroptosis by inducing proteolytic cleavage of RIP1, RIP3, and CYLD. (D) 
In the absence of caspase-8 or in the presence of caspase inhibitor, RIP1, RIP3, and CYLD are protected and can form a necrosome com-
plex and induce necroptosis. (E) One model suggests that FADD deficiency abolishes the formation of RIP1 and RIP3 complex, thereby 
suppressing necroptosis. (F) The other model, which is in conflict with the above-mentioned model (E), suggests that caspase-8 activity 
might be limited in the absence of FADD, and thus RIP1 and RIP3 are able to induce necroptosis. (G) In the presence of caspase-8 in-
hibitor, FADD depletion can enhance necrosome formation and necroptosis. FADD might interfere with the association between RIP1 and 
RIP3 in a caspase-8-indepdendent way.

T cells (115-117). In case of TNF-induced cell death, in which 
TRADD, RIP1 and TRAF2/5 act as adaptors, the roles of FADD 
are controversial because FADD is not a direct adaptor (Fig. 2A). 
Indeed, FADD was detected in TNF-induced complex II and ne-
crosome complex in numerous studies (Fig. 2B) (22, 78, 79, 118, 
119). Since FADD is required for full activation of caspase-8, 
both FADD and caspase-8 are required for apoptosis (Fig. 2C). 
Consistent with this idea, TNF-induced apoptosis was abrogated 
by FADD deficiency (19, 113). In contrast, several studies also 
suggest FADD is indispensable for TNF-induced apoptosis (120). 
Since caspase-8 suppresses necroptosis and leads to apoptosis, 
inhibition of caspase-8 is a prerequisite for converting signaling 
from apoptosis to necroptosis in most cell types. (Fig. 2C and 
2D) (121). Similar to TNF-induced apoptosis, several studies sug-
gest FADD is also required for TNF-induced necroptosis (Fig. 
2E). FADD KO MEF exhibited resistance to TNF-induced nec-
roptosis (118). On the other hand, many reports have suggested 
negative roles of FADD in TNF-induced necroptosis. A study us-
ing L929 cells with FADD knockdown by shRNA showed FADD 
depletion induced necroptosis (Fig. 2F) (90). We also recently re-
ported that siRNA- or shRNA-mediated knockdown of FADD in 
L929 and HT-29 cells resulted in an increase in RIP1-RIP3 ne-

crosome formation and necroptosis in the presence of caspase 
inhibitor, whereas FADD overexpression in L929 cells delayed 
RIP1-RIP3 necrosome formation and necroptosis (Fig. 2G versus 
2D) (72). Since FADD is required for the activation of caspase-8, 
which is able to suppress necroptosis, FADD-deficient cells facil-
itate necroptotic cell death by abrogating caspase-8 function (Fig. 
2F). However, the evidence that FADD also prevents necroptosis 
in the presence of caspase inhibitor suggests that FADD might 
regulate necroptosis in a caspase-8-independent manner (Fig. 
2G). Indeed, since FADD can interact with RIP1 and RIP3, 
FADD might directly regulate the RIP1-RIP3 interaction (79) 
(unpublished data). The involvement of FADD in necroptosis in-
duced by other DRs such as TWEAK is currently unknown. 

The role of FADD in necroptosis induced by other signals
In addition to DRs, various signals are capable of inducing nec-
roptosis (See ref. 122 for review) . Toll-like receptor signaling ac-
tivated by LPS, poly(I:C), and viral dsRNAs is well known to in-
duce necroptosis although exact mechanisms are unclear (122). 
Toll/IL-1 receptor domain-containing adapter inducing IFN-β 
(TRIF) has been suggested as a key molecules for TLR3- and 
TLR4-induced necroptosis as it forms a complex with RIP3 (Fig. 
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Fig. 3. Possible roles of FADD on necroptosis in response to various stimuli. (A) TLR3 or TLR4 activation leads to the interaction between 
TRIF and RIP3, inducing RIP3 activation and necroptosis. FADD-deficient cells were sensitive to TLR-mediated necroptosis, indicating that 
FADD negatively regulates TLR-mediated necroptosis. However, whether FADD directly regulates TRIF and RIP3 is currently unknown. 
Also, RIP1 interacts with TRIF to induce cell survival and RIP3 to induce necroptosis, suggesting an intricate function of RIP1. (B) Upon 
viral infection, dsRNA is recognized by RIG-1 and DAI. FADD forms a complex with RIP1, TRADD, and RIG-1 upon viral infection. 
Although this complex seems to have a potential role in inducing necroptosis, it has not been studied in a necroptosis model. DAI re-
cruits RIP1 and RIP3, mediating necroptosis. (C) RIP1, FADD, caspase-8, FLIP and IAPs form a ripoptosome complex upon DNA damage 
or IAP depletion independently of death receptor pathway, and mediates apoptosis and necroptosis. Ripoptosome is also thought to be in-
volved in necroptosis, occurring in the cytosol independently of DR activation such as TLR signaling. (D) ROS is an important executor 
mechanism for necroptosis. Recently, RIP3 was found to directly activate several proteins to induce mitochondrial ROS generation. Since 
FADD-deficient cells seem to be more sensitive to H2O2-induced necroptosis, FADD might interfere with ROS-mediated necroptosis di-
rectly or indirectly.

3A) (123). TRIF is also known to interact with RIP1 to induce cell 
survival (124). Since RIP1 has a role in cell survival and nec-
roptotic cell death, the role of RIP1 in TLR-induced necroptosis 
is not still clear (123). FADD-deficient Jurkat T cells underwent 
necrosis, while wild-type Jurkat T cells underwent apoptosis in 
response to dsRNA, suggesting FADD might have a negative role 
in TLR-induced necroptosis (Fig. 3A) (83). However, whether 
FADD directly regulates TRIF-RIP3 complex has not been stud-
ied yet. Activation of RIG-1 upon viral infection also triggers the 
formation of signaling complex containing RIP1, FADD, and 
TRADD, which are essential for dsRNA signaling (122) (Fig. 3B). 
But, it remains to be determined if the RIG-1-FADD pathway in-
duces necroptosis. The cytosolic sensor DNA-dependent activa-
tor of IFN-regulatory factors (DAI) also recognizes viral dsRNA 
and recruits RIP1 and RIP3 to initiates necroptosis or NF-kB path-
way (125, 126). Recently, a 2-MDa intracellular death-inducing 
complex called a ‘ripoptosome’ was identified (127, 128). This 
complex contains RIP1, FADD, caspase-8, cFLIP, cIAP1/2, and 
XIAP. Ripoptosome can be formed and induce both apoptosis 

and necroptosis upon genotoxic stress or TLR3 activation in-
dependent of DR activation (Fig. 3C) (127, 128). Since DAI is al-
so associated with RIP1 and RIP3, ripoptosome might be in-
volved in DAI-induced necroptosis (125). IAP antagonists en-
hance ripoptosome formation, suggesting that cIAP1/2 and XIAP 
prevent ripoptosome function. However, it remains to be studied 
whether FADD controls apoptosis and necroptosis as a member 
of the ripoptosome.
　For a long time, oxidative stress and reactive oxygen species 
(ROS) were thought to induce necrosis. Indeed, TNF-induced 
necroptosis activates mitochondria to generate massive ROS, 
which is regarded as an executioner of necroptosis. RIP3 is 
known to directly bind to and phosphorylate many enzymes 
(related to ROS) (80, 112) (Fig. 3D). FADD-deficient MEF has 
been shown to be hypersensitive to H2O2-induced necroptosis 
(18, 129), but the regulatory mechanism remains unclear (Fig. 
3D). To summarize, although FADD is indispensible for DR-in-
duced apoptosis, the roles of FADD and its mechanism on sig-
nal-mediated necroptosis is still controversial and requires fur-
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ther research in detail.

The roles of FADD in an in vivo mice model
Although FADD seems to have contradictory roles in necroptosis 
after induction by various stimuli in cell-based models, the in 
vivo role of FADD in necroptosis under various conditions has 
been shown to be consistent. Despite the defect in inducing 
apoptosis, genetic deletion of FADD has shown embryonic le-
thality with a defect in T cell proliferation (113, 114). In addi-
tion, ectopic expression of the dominant-negative form of FADD 
or T cell-specific depletion of FADD suppresses T cell develop-
ment (130-132), in part, due to defect in immune signaling and 
cell proliferation (2, 133, 134). Interestingly, necroptosis was re-
cently suggested to be a main cause of embryonic lethality in 
FADD-deficient mice. FADD KO mice showed increased ne-
crosis with upregulation of RIP1, and lethality of FADD KO was 
successfully rescued by RIP1 deletion (18). In addition, nec-
roptosis was also involved in the T cell defect in functional 
FADD deficiency although the roles of RIP1 and RIP3 are 
controversial. The earlier study using T cell-specific deletion of 
FADD resulted in necroptosis independently of RIP1 or RIP3 
(135), whereas the later study using T cell-specific expression of 
the dominant-negative form of FADD (FADDdd) resulted in 
RIP3-dependent necroptosis, and this was rescued by RIP3 dele-
tion (16). Autophagy is also increased in T cell-specific FADD 
depletion, leading to RIP1-dependent necroptosis (136). Further-
more, epidermal keratinocyte-specific deletion of FADD resulted 
in RIP3-dependent necroptosis, which induced skin in-
flammation (15). FADD has also been shown to suppress epi-
thelial cell necroptosis using an intestinal epithelial cell-specific 
knockout mouse model (17). Since FADD is involved in nec-
roptosis, which is induced by a variety of stimuli, the specific 
mechanism by which FADD regulates necroptosis in vivo re-
quires further studies.

Proposed mechanisms by which FADD regulates necroptosis in a 
caspase-8-dependent and -independent manner
Caspase-8 has critical roles in regulating between apoptosis and 
necroptosis. In normal condition, necroptosis is suppressed by 
caspase-8-mediated cleavage and inhibition of RIP1 and RIP3. 
Thus, most necroptosis models require caspase inhibition by a 
viral protein or chemical inhibitor. Many in vivo experiments us-
ing caspase-8-deficient mice support these ideas. Caspase-8-defi-
cient mice also die between E10.5 and E11.5, despite the ab-
sence of apoptosis (119, 137). Embryonic lethality of these mice, 
which showed massive necroptosis, was rescued by RIP3 dele-
tion (119, 137). Furthermore, caspase-8-deficient T cells dis-
played necroptosis cell death, which was revered by RIPK3- defi-
ciency (95, 138). In addition, caspase-8 is shown to negatively 
regulate epithelial cell necroptosis and terminal ileitis using con-
ditional caspase-8-deficient mice (96). As a critical role of FADD 
in caspase-8 activation, FADD deficiency is thought to lead to 
necroptosis by inhibiting caspase-8 function. Supporting this 
idea, FADD deficiency abrogated caspase-8 activity and resulted 

in necroptosis (90). However, FADD’s functions on various stim-
uli-induced necroptosis are contradictory; it seems to be depend-
ent of stimuli. Since many studies have analyzed the roles of 
FADD in necroptosis under caspase inhibition using zVAD-fmk, 
and pan-caspase inhibitor, the presence and absence of FADD 
will not affect caspase-8 activity. Interestingly, FADD-depleted 
cells formed a more RIP1/RIP3 necrosome complex upon TNF 
activation in the presence of caspase inhibitor (72). Since FADD 
can bind to RIP1 and RIP3, FADD might directly modulate the 
interaction between RIP1 and RIP3 (72, 79). Thus, we cannot ex-
clude the idea that FADD might have caspase-8-independent 
role as well as caspase-8-dependent role in necroptosis. The ex-
act mechanism by which FADD regulates necroptosis in re-
sponse to various stimuli requires further investigation.

CONCLUDING REMARKS

Beyond the essential function of FADD on the induction of 
DR-mediated apoptosis, FADD has been implicated in numerous 
signaling pathways, including those for cell cycle regulation, im-
mune signaling, and autophagy as well as physiological outcome 
inducing inflammation, cell proliferation, embryonic and im-
mune cell development and tumorigenesis (2). Recent studies 
have used various mouse model, highlighting the important roles 
of FADD on necroptosis affecting embryonic development, im-
mune function, intestinal and skin inflammation (15-18). 
Nevertheless, the exact molecular mechanism of FADD-depend-
ent necroptosis regulation has been poorly studies and is still 
controversial. In this review, we have discussed the roles of 
FADD on necroptosis triggered by a variety of signals based on 
the existing research on FADD’s function in necroptosis. FADD 
seems to be essential for the Fas- or TRAIL receptor-activated 
necroptosis, whereas it seems to act negatively to TNF-induced 
necroptosis. Upon various stimuli, FADD forms a signaling com-
plex with RIP1 and RIP3, both of which are important to nec-
roptosis induction. However, whether FADD affects necroptosis 
positively or negatively upon a range of stimuli has not been ex-
tensively explored. Taken together, as an important regulator for 
development, tumorigenesis and immune function, the studies 
on FADD in vitro and in vivo will advance the perspective for 
developing therapeutic methods for cancer and immune disease. 
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