• Title/Summary/Keyword: Production & Inventory System Design

Search Result 45, Processing Time 0.021 seconds

A Study on the Productivity Increment through Construction of Lean Production System for Automobile Plant in China (중국 자동차 공장의 린 생산 체계 구축을 통한 생산성 향상에 관한 연구)

  • Jang, Jung-Hwan;Zhang, Jing-Lun;Yoo, Sung-Hee;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.14 no.1
    • /
    • pp.117-122
    • /
    • 2012
  • This paper deals with the productivity increment through construction of lean production system for automobile factory in China. This lean production system has been progressed according to 5 steps. Step 1 is the work preparation. Step 2 is the process design. Step 3 is the establishment of method to count production quantity. Step 4 is the establishment of measuring method for input and output. Finally, step 5 is the construction of flexible production system able to adapt for environment change. This lean production system is expected to obtain the productivity increment by 50% for plastic plant and reduction by 50% in inventory quantity.

A Case Study on Productivity Improvement by a Discrete Event-Driven Simulation System (이산사건 시뮬레이션 시스템을 활용한 생산성 개선 사례 연구)

  • Kim, Sangtae;Shin, Moonsoo;Ryu, Kwangyeol;Cho, Yongju
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.38 no.4
    • /
    • pp.149-158
    • /
    • 2015
  • Up-to-date manufacturing companies have faced a market-driven environment of pull production order. There should be a difference in operating manufacturing resources according to the type, quantity, and delivery time of manufactured products, because the process situation in pull production is changed by customer orders. And it should be taken into account from the stage of preparing for production such as process design and the placement and utilization of manufacturing resources. However, the feasibility of production plans is limited because most of small manufacturing businesses make production/supply plan of the parts and products assuming that equipment abilities in scheduling is sufficient without managing process standard information systemically. In this study, a discrete event simulation system based on BOM (bill of material), that is F-OPIS (online productivity innovation system), is introduced and a case study on application of the system leading to improving productivities is presented. F-OPIS deals with a decision-problem on production management and it is specialized for small-and- medium sized manufacturing companies. The target company of this case study is a typical small-and-medium sized manufacturing company in Korea, that produces various machined parts. The target company adopts make-to-stock production management to prevent tardy delivery because of fluctuations in demand. Therefore, it is required to apply an efficient inventory control solution for improving productivities. In this paper, based on the constraints of working capacity of manufacturing resources, the bottleneck process is analyzed as production conditions are changed. Consequently, an improvement plan is proposed, that eventually enhances overall utilization rates of resources in the bottleneck process and reduces overall production lead-time and inventory level.

A Proposal for the Improvement Method of Order Production System in the Display Industry (디스플레이산업에서 수주생산방식의 개선 및 효율화 제고 방안)

  • Cho, Myong Ho;Cho, Jin Hyung
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.39 no.4
    • /
    • pp.106-116
    • /
    • 2016
  • MTO (Make to Order) is a manufacturing process in which manufacturing starts only after a customer's order is received. Manufacturing after receiving customer's orders means to start a pull-type supply chain operation because manufacturing is performed when demand is confirmed, i.e. being pulled by demand (The opposite business model is to manufacture products for stock MTS (Make to Stock), which is push-type production). There are also BTO (Build to Order) and ATO (Assemble To Order) in which assembly starts according to demand. Lean manufacturing by MTO is very efficient system. Nevertheless, the process industry, generally, which has a high fixed cost burden due to large-scale investment is suitable for mass production of small pieces or 'mass customization' defined recently. The process industry produces large quantities at one time because of the lack of manufacturing flexibility due to long time for model change or job change, and high loss during line-down (shutdown). As a result, it has a lot of inventory and costs are increased. In order to reduce the cost due to the characteristics of the process industry, which has a high fixed cost per hour, it operates a stock production system in which it is made and sold regardless of the order of the customer. Therefore, in a business environment where the external environment changes greatly, the inventory is not sold and it becomes obsolete. As a result, the company's costs increase, profits fall, and it make more difficult to survive in the competition. Based on the customer's order, we have built a new method for order system to meet the characteristics of the process industry by producing it as a high-profitable model. The design elements are designed by deriving the functions to satisfy the Y by collecting the internal and external VOC (voice of customer), and the design elements are verified through the conversion function. And the Y is satisfied through the pilot test verified and supplemented. By operating this make to order system, we have reduced bad inventories, lowered costs, and improved lead time in terms of delivery competitiveness. Make to order system in the process industry is effective for the display glass industry, for example, B and C groups which are non-flagship models, have confirmed that the line is down when there is no order, and A group which is flagship model, have confirmed stock production when there is no order.

Optimal Design of Process-Inventory Network under Cycle Time and Batch Quantity Uncertainties (이중 불확실성하의 공정-저장조 망구조 최적설계)

  • Suh, Kuen-Hack;Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • The aim of this study is to find an analytic solution to the problem of determining the optimal capacity of a batch-storage network to meet demand for finished products in a system undergoing joint random variations of operating time and batch material loss. The superstructure of the plant considered here consists of a network of serially and/or parallel interlinked batch processes and storage units. The production processes transform a set of feedstock materials into another set of products with constant conversion factors. The final product demand flow is susceptible to joint random variations in the cycle time and batch size. The production processes have also joint random variations in cycle time and product quantity. The spoiled materials are treated through regeneration or waste disposal processes. The objective function of the optimization is minimizing the total cost, which is composed of setup and inventory holding costs as well as the capital costs of constructing processes and storage units. A novel production and inventory analysis the PSW (Periodic Square Wave) model, provides a judicious graphical method to find the upper and lower bounds of random flows. The advantage of this model is that it provides a set of simple analytic solutions while also maintaining a realistic description of the random material flows between processes and storage units; as a consequence of these analytic solutions, the computation burden is significantly reduced. The proposed method has the potential to rapidly provide very useful data on which to base investment decisions during the early plant design stage. It should be of particular use when these decisions must be made in a highly uncertain business environment.

Design and Implementation of the Web Services Based Collaborative Production Management System (웹 서비스 기반의 협업적 생산관리 시스템의 설계 및 구축)

  • Lee, Myeong-Ho;Kim, Hyeoung-Seok;Kim, Nae-Heon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.3
    • /
    • pp.79-86
    • /
    • 2006
  • Especially, MTO(Make-To-Order) companies take collaborative approaches with their partner companies to make low-price products and/or technologically low intensive products. The collaborative approach to manufacturing requires collaboration with partner companies for inventory review, production plan, and manufacturing to fulfill customer's orders. However, frequent changes of partnerships binder partner companies from sharing production information in effective ways since their information systems have different data architectures and platforms. Therefore, it is required flexible and standardized system integration approach fir effective information sharing. This research studies current status and problems of collaborative production system, proposes an architecture for collaborative production systems based on Web Services which is a standard information technology, and discusses expected effects and the vision of Web Services.

Optimal Design of Batch-Storage Network with Finite Intermediate Storage (저장조 용량제약이 있는 회분식 공정-저장조 그물망 구조의 최적설계)

  • Kim, Hyung-Min;Kim, Kyoo-Nyun;Lee, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.10
    • /
    • pp.867-873
    • /
    • 2001
  • The purpose of this study is to find analytic solution of determining the optimal capacity (lot-size) of multiproduct acyclic multistage production and inventory system to meet the finished product demand under the constraint of finite intermediate storage. Intermediate storage is a practical way to mitigate the material flow imbalance through the line of supply and demand chain. However, the cost of constructing and operating storage facilities is becoming substantial because of increasing land value, environmental and safety concern. Therefore, reasonable decision-making about the capacity of processes and storage units is an important subject for industries. The industrial solution for this subject is to use the classical economic lot sizing method, EOQ/EPQ(Economic Order Quantity/Economic Production Quantity) model, incorporated with practical experience. But EOQ/EPQ model is not suitable for the chemical plant design with highly interlinked processes and storage units because it is developed based on single product and single stage. This study overcomes the limitation of the classical lot sizing method. The superstructure of the plant consists of the network of serially and/or parallelly interlinked non-continuous processes and storage units. The processes transform a set of feedstock materials into another set of products with constant conversion factors. A novel production and inventory analysis method, PSW(Periodic Square Wave) model, is applied to describe the detail material flows among equipments. The objective function of this study is minimizing the total cost composed of setup and inventory holding cost. The advantage of PSW model comes from the fact that the model provides a set of simple analytic solutions in spite of realistic description of the material flows between processes and storage units. the resulting simple analytic solution can greatly enhance the proper and quick investment decision for the preliminary plant design problem confronted with economic situation.

  • PDF

An Optimal Operating Policy for Two-stage Flow Lines with Machine Failures

  • Koh, Shie-Gheun;Hwang, Hark
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.21 no.2
    • /
    • pp.17-33
    • /
    • 1996
  • Automatic transfer defined as an integrated system with a number of workstations, interstation storage buffers, automatic device and a control system, play a major role in ass production systems. Due to high capital investment needed for an automatic transferline, greater care should be taken in its design so as to maximize the system performance. One may to control the system performance is to control buffer storage. To control the interstation work-in-process inventory, we propose dual limit switches which control the buffer storage with two parameters, R and r. Under the policy, proceding station is forced down when the inventory level in the buffer reaches R until the level falls to r. For the model developed, we analyze the system characteristics and find the optimal control parameters with a serach procedure.

  • PDF

The Development of Model and Cost Analysis to the Application of Modular Production System in Lean Supply Chain Management (Lean SCM에서의 모듈생산의 적용에 따른 모델개발과 원가분석)

  • 김태호;양광모;권정휘;강경식
    • Journal of the Korea Safety Management & Science
    • /
    • v.4 no.4
    • /
    • pp.73-85
    • /
    • 2002
  • The supply chain not only includes the manufacturer and suppliers, but also transporters, warehouses, retailers, and customers themselves. Within each organization, such as manufacturer, the supply chain includes all functions involved in filling a customer request. these functions include, but are not limited to, new product development, marketing, operation, distribution, finance, and customer service. Lean Supply chain coordination improves if all supplier of chain take actions that together increase total supply chain profits. To design of Modularity by the grouping supplier, the proposed method is to develop the most appropriate production system models in the Supply Chain Management which is necessity of the times and its importance. The objects of this study is development of model and cost analysis to the modular production system in Lean SCM. Introduction of modular production system in Lean SCM is effective in reducing the cost in processing, manufacturing, inventory holding, ordering, etc.

Optimal design of parallel noncontinuous units with feedstock/product storages (원료및 제품저장조를 포함하는 병렬 비연속 공정의 최적설계)

  • Yi, Gyeong-Beom
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.532-541
    • /
    • 1997
  • This article derives an analytic solution to determine the optimal size of multiple noncontinuous process and storage units. The total cost to be minimized consists of the setup cost of noncontinuous processing units and the inventory holding cost of feedstock/product storages. A novel approach, which is called PSW(Periodic Square Wave) model, is applied to represent the material flow among non-continuous units and storages. PSW model presumes that the material flow between unit and storage is periodic square wave shaped. The resulting optimal unit size has similar characteristics with the classical economic lot sizing model such as EOQ(Economic Order Quantity) or EPQ(Economic Production Quantity) model in a sense that the unit size is determined as the balance between setup and inventory holding cost. However, the influence of inventory holding cost of PSW model is different from that of EOQ/EPQ model. EOQ/EPQ model includes only the product inventory holding cost but PSW model includes all inventory holding costs around the non-continuous unit with proportional contribution. PSW model is suitable for analyzing interlinked process-storage system. The optimal lot size of PSW model is smaller than that of EOQ/EPQ model. This is quitea remarkable result considering that the EOQ/EPQ model has been is widely used since last half century.

  • PDF

OPTIMAL DESIGN OF BATCH-STORAGE NETWORK APPLICABLE TO SUPPLY CHAIN

  • Yi, Gyeong-beom;Lee, Euy-Soo;Lee, In-Beom
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1859-1864
    • /
    • 2004
  • An effective methodology is reported for the optimal design of multisite batch production/transportation and storage networks under uncertain demand forecasting. We assume that any given storage unit can store one material type which can be purchased from suppliers, internally produced, internally consumed, transported to or from other plant sites and/or sold to customers. We further assume that a storage unit is connected to all processing and transportation stages that consume/produce or move the material to which that storage unit is dedicated. Each processing stage transforms a set of feedstock materials or intermediates into a set of products with constant conversion factors. A batch transportation process can transfer one material or multiple materials at once between plant sites. The objective for optimization is to minimize the probability averaged total cost composed of raw material procurement, processing setup, transportation setup and inventory holding costs as well as the capital costs of processing stages and storage units. A novel production and inventory analysis formulation, the PSW(Periodic Square Wave) model, provides useful expressions for the upper/lower bounds and average level of the storage inventory. The expressions for the Kuhn-Tucker conditions of the optimization problem can be reduced to two sub-problems. The first yields analytical solutions for determining lot sizes while the second is a separable concave minimization network flow subproblem whose solution yields the average material flow rates through the networks for the given demand forecast scenario. The result of this study will contribute to the optimal design and operation of large-scale supply chain system.

  • PDF