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An Optimal Operating Policy for Two-stage
Flow Lines with Machine Failures

Shie-Gheun Koh*- Hark Hwang*

Abstract

Automatic transfer lines, defined as an integrated system with a number of workstations,
interstation storage buffers, automatic transfer device and a control system, play a major role in
mass production systems. Due to high capital invistment needed for an automatic transfer line,
greater care should be taken in its design so as to maximize the system performance. One way to
control the system performance is to control buffer storage between successive stations, and so we
give attention to the control policy of the buffer storage. To control the interstation work-in-process
inventory, we propose dual limit swilches which cortrol the buffer storage with two parameters, R
and 7. Under the policy, preceding station is forcedd down when the inventory level in the buffer
reaches R until the level falls to 7. For the model developed, we analyze the system characteristics

and find the optimal control parameters with a search procedure.

1. Introduction

Automatic transfer lines which can be defined as a number of automated machines and
storage buffers, in series, integrated into one sysiem by an automatic transfer mechanism and
a control system are key parts of most mass production systems. Workpieces pass through
successive stations with specific operations being performed at each station. A major cause of

line inefficiency is breakdowns in each station. Suppose that there are no storage buffers.
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Then, when a station breaks down, the stations following it may be forced down, or starved,
since the broken down station is unable to feed the downstream stations. Similarly, preceding
stations may be forced down, or blocked, since the broken down station is unable to remove
the semiprocessed items from the upstream stations. Interstation storage buffers are used to
reduce the effect of strong interference between stations.

In this system, the operation of each station is controlled by a switch control system, what
we call limit switch, with the information of storage buffer. For example, the maximum per-
mitted inventory level, say R, of work-in-process between the two stations is predetermined by
the buffer capacity. If the number of workpieces in the buffer is less than R units, preceding
station continues its operation and produces its sutput until R units are placed in the buffer.
When the buffer is full the limit switch automatically stops the operation of preceding station.
Similarly, if there is no workpiece in the buffer, succeeding station cannot continue its oper-
ation. Monden[9] reported that intermittent operation by this system, he called it the full
work system, is adopted in all Toyota production lines.

Such two-station production systems have been extensively studied. Buzacott and Hanifin[1]
proposed a review and comparison of related topics. Buzacott and Kostelski[2] analyzed the
system with discrete workpieces, finite buffers and random processing time, but without fail-
ure. Seidmann[11] discussed the system of multi-buffer. Okamura and Yamashina[10] assumed
deterministic processing times with random failures. Analysis of some extension of this model
using efficient interpolation approximation is discussed by Ignall and Silver[7]. The system
with random processing times and random failures was studied by Gershwin and Berman[3].
Meyer et al. [8] and Wijngaard[13] analyzed the systems in which parts are not treated as
discrete items but as a continuous fluid. But all these researches were concerned about buffer
sizes only.

Some studies deal with buffer control methods as well as buffer sizes. Hopp et al. [5]
presented an optimal control policy in case of continuous material flow. The case of random
processing times and random failure was studied by Hwang and Koh[6].

In this paper we consider a two station automatic transfer line where workpiece transfers at
all stations are synchronized to occur at the same time epoch. Each station can fail and be
repaired. The buffer storage capacity between the two stations is finite and we control this
system with (R, ») policy, or equivalently, dual limit switch system, in which the preceding
station is forced down when the inventory level rises to R and restarts when it falls to 7,
Rz7r+1. In this system the maximum inventory .evel R is controlled by a device called upper
limit switch and the restarting point » by lower limit switch.

The purpose of this study is to gain insight in.o the policy to control the buffer storage in
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twostation transfer lines by the following study of the problem. First, a Markov model of the
problem is proposed to derive the steady state probability of each system state. Next, based

on the model developed, an optimal buffer control policy is found by numerical search.

[I. Model Development

2. 1 Model Description and Assumptions

The transfer line produces one kind of commodity, and consists of two stations. At each
station an operation is carried out on a workpiece. The stations are arranged serially so that
each workpiece enters the line at the first station, and begins to transfer from the station to
the next at the same instant. The interval between successive transfers is called the cycle
time. There is always a supply of workpieces available to the first station of the line. The fi-
nal station will deposit the completed workpiece into a storage area which has an infinite ca-
pacity. The inter-station buffer storage has, however, a fixed capacity R.

Without loss of generality we define the time units so that the cycle time is one. This is
accomplished by dividing all the time parameters used in the model by original cycle time.
The transformation maps many equivalent problems to one that is easier to manipulate. The
transporting time between the stations is assumcd to be negligible or subsumed by the unit
production time (cycle time).

The performance of a particular station is defined by a set of four states:

(1) Operating : A station is in working order and carrying out its function [abbrev. : U].

(2) Broken down and under repair : A station is subject to breakdowns, which are random
in both occurrence and duration. These breakdowns may be a result of a malfunction, or time
required to change or adjust tools, settings, and so forth [abbrev.: D].

(3) Starving:The subsequent station is in working order, but unable to operate because it
has no workpiece to process [abbrev.:S].

(4) Blocking : Once the inventory level reaches /2, the preceding station cannot produce until
the inventory level falls to #» [abbrev.: B].

The role that a buffer plays is to diminish or eliminate the possibility of starving and
blocking by means of its storing and replenishing functions.

The following fundamental assumptions are made -

(1) The probability that station 7 (i=1, 2) breaks down in a cycle, given that it was oper-
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ative at the end of the previous cycle, is f; which is called failure rate. The failure rate of a
forced down (starving or blocking) station is assumed to be zero. In effect we are considering
only operation dependent failures.

(2) The probability that the repair on station i (i=1, 2) is completed in a cycle, given
that the station broken down or was under repair during the previous cycle, is #; which is
called repair rate.

(3) When a station is broken down, its unit is scrapped.

2. 2 Markov Chain Model Representation

Suppose we observe the state of the automatic transfer line just after each transfer of
units. Let X; be the system state at the jth observation epoch. The state is described by a
triple (%, @, §) in which # means the number of work-in-process in the buffer (0<x#<R) while
o and f are the performances of the preceding and succeeding stations, respectively (x and g
can be U(up), D(down), S(starving), or B{blocking)). Therefore, the state space E and the

total number of states NS are as follows :

E={ (0, D, S), (0, U, S,
(n, U, U), (n, U, D), (n, D, U), (n, D, D):n=0, 1,., R—1,
(R, B, D),
(k, B, U), (k, B, D) : k=R~-1, R~2,..., r+2, r+1 } (1)

NS=2+4R+1+2(R-r—-1)
=6R—2r+1 (2)

It can be verified that { X; } is an irreducible Markov chain with transition probability
matrix P in which the states are arranged by the order of the state space E.

-

A A
A2 31 Bo
B, B B,
B. B, B,
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or for the special case of »r=R—1,

A A
A B B
B, B, B,
P= B, B, B,
X B,
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D1=;z
Dy=(r, 0),
D3=(7’z 0 O O)v

Eo=[f2 0],
I £ 0
0
5o % )
0 &)
. 0 0 0
E2:|:fz ]
v» 0 0 0
and fi=1—f, r=1-7:i=1, 2

Let x be the steady state probability vector of the Markov chain { X, }. Then x is the

unique nonnegative solution of
xP=x and xe=1, (5)

where e=(1, 1,.,1)" is an NS-component column vector. This system of equations is redundant
since it has NS unknowns and NS+1 equations. And we set a transformed system of

equations as follows :
xQ=Dh, (6)

where b=(1, 0, 0,., 0) is an NS-component row vector and Q is the NSXINS matrix which
is derived by converting the first column of (I—P) to e where I is an identity matrix of the

same dimension as P. It is well known that Q is a nonsingular matrix and
x=bQ"". (7)

The right hand side of the above equation is the first row vector of Q'. Therefore the
steady state probability vector of the Markov chain { X, } is the first row vector of Q' and
all the thing we have to do is to calculate the inverse matrix of Q.

In calculation of the inverse matrix we have a limitation of the matrix size which depends
on the size of the buffer storage. The number of system states may be very large when the
buffer size is big. Shanthikumar and Tien[12] developed a method to break the limitation
when the single limit switch is used. In our dual limit switch system, however, their method
cannot be applied and we have a limitation of buffer size which depends on the computer

memory size used. But, in spite of the increase of the number of system states in our dual



#2148 2%  An Optimal Operating Policy for Twostage Flow Lines with Machine Failures 23

limit switch system, this limit is almost same as the single switch system by matrix par-
tition method in the calculation of inverse matrix.
Let

s=2+4R

and t=NS-s. (8)

We partition Q as follows :

{37}
Y ¢

where a is an sXs submatrix, 8 an sX{ submatrix, ¥ a ¢Xs submatrix, and & a X!

submatrix. Then Q' is partitioned in the same way as Q, that is,

Q:[A B J (10)
C D

where A is sXs, B is sx¢, C is txs, and D is #x¢ Hadley[4] shows that
A=(a—gs7 "), (11)
B=—Ags"". (12)

Note that we have no concern at C or D since we need only the first row of the inverse
matrix.

Submatrix ¢ is an upper-triangular matrix and its inverse can easily be derived. And the
sXs matrix A0”'Y has only four nonzero elements. Therefore we need the memory size of
almost same as $Xs matrix.

Once the long run probability of each state is obtained, the following performance measures
can be calculated. Here, we let p(#n, a, 8) be the steady state probability of the chain { X },
that is,

o(n, a, f)=lim.. Pr{X,=(n, « B)}. (13)
1) Utilization ratio of a station:time devoted to producing items during a unit of time

e=p(0, U, )+, s {p(n, U, U)+p(n, U, D) (14)

e~Yto(n, U, U)+p(n, D, U)IHE,uplk, B, U) (15)

2) System productivity : output from the system per unit time
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P=62]-—2 (16)

3) Average work-in-process in the buffer storage
T =Y, n-{p(n, U, U)+p(n, U, D)+p(n, D, U)+p(n, D, D)}
+R - p(R, B, D)+Y, ..k {p(k, B, U)+p(k, B, D)} (17)

2. 3 Computational Experience

In this subsection we describe the results of a set of numerical experiments which demon-
strate that the model behaves reasonably as its parameters are varied.

First, we observe the response of the system performance to failure rate and repair rate:f;
and 7;, 7=1, 2. Figure 1 and 2 show the result. In these figures one parameter was varied
over a range (0.001 through 0.75), while all others were held constant. The standard values of
the parameters were : fi=0.1, f,= 0.1, ©=0.25, 7,==0.25, R=20, and »=10.

The graph of the system productivity is plotted in Figure 1. It shows that as f; or f, fail-
ure rate of each station, increases, system productivity P decreases and that as 7 or 72, Te-
pair rate of each station, increases, P increases. Figure 2 shows that as fi or #; increases, av-
erage work-in-process I decreases and that as /> or 7 increases, I increases. All the results

agree the intuition.

0.60
0.40F
P
0.20
0.00F
1 1 ! 1 1 1 L 1 1 1 ! I

001 .002 .005 007 .0t .025 .05 .075 1 25 5 75

— A —+ f = 1, -,

Figure 1. Effects of f,, f,, ry and r, to P
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Figure 2. Effects of fi, f, ri and r, to [

Next we observe the effects of the buffer size on the system performances. The changes of
system performance due to the change of buffer storage capacity in six cases, which 1is
summarized in Table 1, were observed.

In the table we define #solated efficiency of station i which means time devoted to produc-

ing items during a unit of time without considering force down effect as follows :

pi=ri/ (firtr), i=1, 2. (18)

Table 1. Summary of numerical experiments

Case fi §2 7 72 Dt P2 o/ pe
1 0.1 0.1 0.1 0.5 0.500 0.833 0.6
2 0.05 0.1 0.1 0.5 0.667 0.833 0.8
3 0.1 0.1 0.5 0.5 0.833 0.833 1.0
4 0.1 0.05 0.5 0.1 0.833 0.667 1.25
5 0.1 0.1 0.5 0.1 0.833 0.500 1.67
6 0.05 0.1 0.5 0.1 0.909 0500 . 1.82
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Based on the table, we plotted two graphs, Figure 3 and 4. In these figures we assumed that
the restarting point of the preceding station » has a half value of buffer size R,i.e,r=R/2.
From Figure 3, the following observations can be made:
1) As buffer capacity increases, P increases with an upper bound.
2) For a given buffer control policy (R and #), P value is ranked by the order of the fol-
lowing factors :
@ min {pl, Pz},
@ max {Pl, Pz},
® p,
@ p..
From the second observation, we can say that balancing the isolated efficiency of each station
Is most important to the increase of system productivity.
Figure 4 shows that as buffer capacity increases, work-in-process increases and that for a

given R and 7 the rank of average inventory level depends upon the order of the ratio, o/ pe

£
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—X— case 5 —— case 6

Figure 3. Effects of buffer size to P
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Figure 4. Effects of buffer size to 1

. Optimal Control Policy

3. 1 Objective Function and Solution Procedure

In this section we consider an optimal control policy (R and ») which minimize an objec-
tive function. Before setting the objective function, we define two terms, FREQ, and FREQ,
which are blocking frequency of station 1 (preceding station) and starving frequency of station

2 (succeeding station), respectively. Then it can be easily shown that:
FREQ =p(r+1, B /T, (19)
and

FREQ.,=p(0, U, S) /T, (20)
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where p(r+1, B*)=p(r+1, B, U)+p(r+1, B, D),
Ti=expected time that the system remains at state (»+1,B,*) once it enters the state
T,=expected time that the system remains at state (0, U/, S) once it enters the state,
and
state(»+1, B*)=an artificial state which contain states (»+1, B, U) and (»+1, B, D)

Using conditional expectation, one can show that:
T\=1+f/7: (21)
To=(rtf)/ (nF)) (22)
In the special case of »r=R-—1,
FREQ\=p(R, B, D)/T\, (23)

where Ti=1/7,

Now we propose an objective function with two decision variables, R and 7, as follows :

COST(R, r)=C{p(0, D, S}+p(0, U, S)}
+C. 7
+CyFREQ,+CyFREQ,, (24)

where C,=shortage (starving) cost of station 2, [$/time unit],
Cw=inventory holding cost, {$/time unit],
Cy=restarting cost of station 7 after blocking or starving, i=1, 2, [$/restart].
Then one can find optimal control policy (R and ») which minimize the above equation using

the solution procedure as follows :

procedure Opt _Control
read f, 7, C,, C; and C,
R <0
repeat
R « R+1, » « =1, COST(R, -1) « «
repeat
y « r+1
calculate p(n, «, B) for all (n, o, §) € E
calculate FREQ, and FREQ,
calculate COST(R, r) by equation (24)
until »=R—1 or COST(R, ) > COST(R, r—1)
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if ¥=R—1 then
COSTr< COST(R, 7), r&* < r
else
COSTr < COST(R, v—1), rg* « r—1
until COSTr > COST g
R* <« R—1, »* < »z*
end procedure

3. 2 Numerical Examples and Observations

In this subsection, we observe the behavior of the system in accordance with the changes of
the cost parameters. Since the problem structure of equation (24) has a form which does not
permit analytic analysis, sample problems are solved to do this.

Setting C, = Cp, = 100, C, = 10 and C, = 200 as the standard values, for each cost par-
ameter, nine different levels are chosen by multiplying the standard value by 1/5, 1/4, 1/3,
1/2, 1, 2, 3, 4 and 5, respectively.

Assuming that fi = 01, . = 02, »» = 025 and » = 025 our solution procedure
determines R* and #* for each level of a cost parameters while the others are fixed to the
standard values.

The results depicted in Figure 5, 6 and 7 show the changes of R* #* and I in accordance
with the perturbations of C,, C. and Ci(=C; = (}fz), respectively. In these figures we can ob-
serve that R* and #* increase as C, increases or C, decreases and that the distance between
R* and »* becomes larger as C; increases.

Figure 8 and 9 show the effects of each cost parameter to the system productivity P and
cost ratio RATIO=COST(R*, »*)/C in which Cis the optimal cost of the single limit switch
system (i. e, #*=R*—1), respectively. In these figures the horizontal axis indicates the value
multiplicated to the standard value of each cost parameter while the others have the standard
values. In Figure 8 we can find that the system productivity increases as C, or C; increases
or as C, decreases. This shows that the system productivity is proportional to average
work-in-process (See Figure 5, 6 and 7.). Figure § shows that the smaller C, or the larger C;
(According to Figure 6 and 7, this results in larger distance between K* and 7*.) makes the
smaller cost ratio which means the dual limit swifch system is better than single limit switch

system.
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Figure 9. Effects of cost Parameters to RATIO

IV. Conclusions

In this paper we analyzed a transfer line consisting of two unreliable stations with the same
deterministic processing time and a finite storage buffer controlled by dual limit switches.
First of all, we identified the system states whose steady state probabilities are determined
by the Markov process model. Then, using a search procedure, we found the optimal control
parameters which minimize the system cost per unit of time.

Once the cost and control parameters are known, the system performance including the
utilization ratio of each station, the production rate of the system and the average

work-in-process inventory, can be determined.
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