• 제목/요약/키워드: Process Response

검색결과 4,463건 처리시간 0.024초

Optimization of Welding Parameters for Resistance Spot Welding of Trip Steel Using Response Surface Methodology

  • Park, H.;Kim, T.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제2권2호
    • /
    • pp.47-50
    • /
    • 2002
  • Because of the environmental problems, automotive companies are trying to reduce the weight of car body. Therefore, TRIP(TRansformation Induced Plasticity) steels, which have high strength and ductility have been developed. Welding process is a complex process; therefore deciding the optimal welding conditions on the basis of experimental data is an effective method. However, trial-and-error method to decide the optimal conditions requires too many experiments. To overcome these problems, response surface methodology was used. Response surface methodology is a collection of mathematical and statistical techniques that are used in the modeling and analysis of problems in which a response of interest is influenced by several variables and the objective is to optimize this response. This method was applied to the resistance spot welding process of the TRIP steel to optimize the welding parameters.

  • PDF

상황 기반 표준 현장조치 행동 매뉴얼 체계에 관한 연구 (A Study of the standard disaster field manuals based on the situations)

  • 박길주;이창열;김태환
    • 한국재난정보학회 논문집
    • /
    • 제14권4호
    • /
    • pp.474-479
    • /
    • 2018
  • 연구목적 : 본 연구는 기존 현장조치 행동매뉴얼의 재난 대응 프로세스 개선에 관한 것이다. 제시하는 재난 대응 프로세스는 다양한 종류의 재난 상황 시나리오를 반영하게 하였다. 연구방법 : 매뉴얼에서 정의하는 위기 형태 유형을 상황으로 정의하고, 상황별로 재난 대응 프로세스를 별도로 만드는 형태로 진행하였다. 연구결과 : 황별로 하나의 매뉴얼에 상황에 따라 여러 종류의 재난 대응 프로세스가 존재한다. 이들 프로세스 사이에는 중복적인 표준행동요령(SOP)이 많이 있기 때문에, 이를 단일 재난 대응 프로세스에 다른 상황을 표시할 수 있는 상황 코드를 개발하고 이를 적용하였다. 결론 : 본 연구를 통해 현장조치 행동매뉴얼이 다양한 재난 상황에 대처할 수 있는 세부 프로세스를 제공함으로써 효과적인 재난 대응을 할 수 있게 하였다.

An Application of Fuzzy Logic with Desirability Functions to Multi-response Optimization in the Taguchi Method

  • Kim Seong-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권3호
    • /
    • pp.183-188
    • /
    • 2005
  • Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields, the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished. Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

인공신경망과 유전알고리즘 기반의 쌍대반응표면분석에 관한 연구 (A Study on Dual Response Approach Combining Neural Network and Genetic Algorithm)

  • ;김영진
    • 대한산업공학회지
    • /
    • 제39권5호
    • /
    • pp.361-366
    • /
    • 2013
  • Prediction of process parameters is very important in parameter design. If predictions are fairly accurate, the quality improvement process will be useful to save time and reduce cost. The concept of dual response approach based on response surface methodology has widely been investigated. Dual response approach may take advantages of optimization modeling for finding optimum setting of input factor by separately modeling mean and variance responses. This study proposes an alternative dual response approach based on machine learning techniques instead of statistical analysis tools. A hybrid neural network-genetic algorithm has been proposed for the purpose of parameter design. A neural network is first constructed to model the relationship between responses and input factors. Mean and variance responses correspond to output nodes while input factors are used for input nodes. Using empirical process data, process parameters can be predicted without performing real experimentations. A genetic algorithm is then applied to find the optimum settings of input factors, where the neural network is used to evaluate the mean and variance response. A drug formulation example from pharmaceutical industry has been studied to demonstrate the procedures and applicability of the proposed approach.

AHP기법을 활용한 제조물책임 대응시스템 구축요인의 전략적 우선순위 도출에 관한 연구 (Extracting Priorities of Strategic Components of Product Liability Response System using AHP)

  • 서준혁;고복수;배성민
    • 품질경영학회지
    • /
    • 제42권2호
    • /
    • pp.235-251
    • /
    • 2014
  • Purpose: To develop efficient PL response system, SMEs should decide which component of PL response system is important and implemented with priority under limited resources. To accomplish this goal, we propose strategic priority components of PL response system for SME manufacturer. Methods: We categorize the components of PL response system based on prior research results - System, Organization, Training, Technology, Cost, and Awareness. AHP (Analytic Hierarchy Process) is applied to extract important components of PL response system, which is used in assigning the priority of component. To analyze effects of each components, performance sensitivity analysis is applied. Results: The survey analysis results show Technology is the most important components. Organization and Cost component are follows. As the importance of Technology is changed, we can find Organization, Cost is second and third important components. Conclusion: Our research shows Technology which is related to make a safe product with systematic process, is a basic enabler of PL response system. Also, building a PL team and securing a budget for PL activity should be carry out with limited resources.

대화식 절차를 활용한 공정능력지수 기반 다중반응표면 최적화 (An Interactive Process Capability-Based Approach to Multi-Response Surface Optimization)

  • 정인준
    • 품질경영학회지
    • /
    • 제45권2호
    • /
    • pp.191-207
    • /
    • 2017
  • Purpose: To develop an interactive version of the conventional process capability-based approach, called 'Interactive Process Capability-Based Approach (IPCA)' in multi-response surface optimization to obtain a satisfactory compromise which incorporates a decision maker(DM)'s preference information precisely. Methods: The proposed IPCA consists of 4 steps. Step 1 is to obtain the estimated process capability indices and initialize the parameters. Step 2 is to maximize the overall process capability index. Step 3 is to evaluate the optimization results. If all the responses are satisfactory, the procedure stops with the most preferred compromise solution. Otherwise, it moves to Step 4. Step 4 is to adjust the preference parameters. The adjustment can be made in two modes: relaxation and tightening. The relaxation is to make the importance of one of the satisfactory responses lower, which is implemented by decreasing its weight. The tightening is to make the importance of one of the unsatisfactory responses higher, which is implemented by increasing its weight. Then, the procedure goes back to Step 2. If there is no response to be adjusted, it stops with the unsatisfactory compromise solution. Results: The proposed IPCA was illustrated through a multi-response surface problem, colloidal gas aphrons problem. The illustration shows that it can generate a satisfactory compromise through an interactive procedure which enables the DM to provide his or her preference information conveniently. Conclusion: The proposed IPCA has two major advantages. One is to obtain a satisfactory compromise which is faithful to the DM preference structure. The other is to make the DM's participation in the interactive procedure easier by using the process capability index in judging satisfaction/unsatisfaction. The process capability index is very familiar with quality practitioners as well as indicates the process performance levels numerically.

반응표면법을 이용한 Al5052 판재의 점진성형 최적화 연구 (Optimization of Incremental Sheet Forming Al5052 Using Response Surface Method)

  • 오세현;샤오샤오;김영석
    • 소성∙가공
    • /
    • 제30권1호
    • /
    • pp.27-34
    • /
    • 2021
  • In this study, response surface method (RSM) was used in modeling and multi-objective optimization of the parameters of AA5052-H32 in incremental sheet forming (ISF). The goals of optimization were the maximum forming angle, minimum thickness reduction, and minimum surface roughness, with varying values in response to changes in production process parameters, such as tool diameter, tool spindle speed, step depth, and tool feed rate. A Box-Behnken experimental design (BBD) was used to develop an RSM model for modeling the variations in the forming angle, thickness reduction, and surface roughness in response to variations in process parameters. Subsequently, the RSM model was used as the fitness function for multi-objective optimization of the ISF process based on experimental design. The results showed that RSM can be effectively used to control the forming angle, thickness reduction, and surface roughness.

자동차 시트벨트의 과도응답 특성에 관한 연구 (Transient Response Characteristics of Vehicle Seatbelt)

  • 김창희;이석순
    • 한국기계가공학회지
    • /
    • 제19권9호
    • /
    • pp.71-77
    • /
    • 2020
  • In recent years, as a consequence of the technological advancements in the automobile industry and changes in consumer demands, the reduction of noise inside vehicles rather than vehicle performance has increasingly become an important factor of interest. To date, most studies have focused on noise and vibration reduction techniques for the engine and drive system of vehicles. In this research, a comparative analysis for reducing the effect of vehicle seatbelts on the transient response is performed using the test of vehicle conditions and transient response analysis in accordance with seatbelt conditions. After the sensitivity analysis, the specifications for improvement were designed based on the transient response analysis. It was confirmed that the transient response characteristics were improved by the transient response analysis and vehicle conditions test. Through computer-aided engineering, the transient response characteristics of seatbelts were checked with less cost and time.

다층분석법을 이용한 대규모 파라미터 설계 최적화 (Multi-Level Response Surface Approximation for Large-Scale Robust Design Optimization Problems)

  • 김영진
    • 경영과학
    • /
    • 제24권2호
    • /
    • pp.73-80
    • /
    • 2007
  • Robust Design(RD) is a cost-effective methodology to determine the optimal settings of control factors that make a product performance insensitive to the influence of noise factors. To better facilitate the robust design optimization, a dual response surface approach, which models both the process mean and standard deviation as separate response surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for process mean and standard deviation are partitioned and estimated based on the multi-level approximation method, which may reduce the number of experimental runs necessary for fitting response surface models to a great extent. The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.

공항운영기업의 전사적 위험관리체계 분석 연구 (A study on the development of Enterprise Risk Management System in Airport Corporation)

  • 서병석;신도형
    • 대한안전경영과학회지
    • /
    • 제17권2호
    • /
    • pp.1-11
    • /
    • 2015
  • Enterprise Risk Management(ERM) is aiming at the establishment of the risk management process to prevent and cope with risks in advance and is composed of Risk Identification, Risk Assessment, Risk Response and Monitoring. It is feedback through the Risk Re-identification. This study has analysed a sample of the risk management system of an airport operating corporation, for this purpose, relevant documents and examples of overseas airports have been reviewed. It has found that corporations establishing ERM have been performing identical procedures such as the process of Identification, Assessment, Effective Reporting, Communication and monitoring and so on. The A corporation has established the process for risk management and crisis management and organized for its organization and system. The risk management has the same process such as above. In this process, when the symptoms of critical crisis have been recognized, it has been transformed into crisis management system, through which, corporate-wide response has been conducted in the process of crisis status analysis, response and follow-up management. This study expects to contribute to systematic foundation for future business continuity on the basis of risks and response procedures acknowledged by this study.