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Abstract

Although it is widely used to find an optimum setting of manufacturing process parameters in a variety of engineering fields,
the Taguchi method has a difficulty in dealing with multi-response situations in which several response variables should be
considered at the same time. For example, electrode wear, surface roughness, and material removal rate are important process
response variables in an electrical discharge machining (EDM) process. A simultaneous optimization should be accomplished.
Many researches from various disciplines have been conducted for such multi-response optimizations. One of them is a fuzzy
logic approach presented by Lin et al. [1]. They showed that two response characteristics are converted into a single performance
index based upon fuzzy logic. However, it is pointed out that information regarding relative importance of response variables is
not considered in that method. In order to overcome this problem, a desirability function can be adopted, which frequently
appears in the statistical literature. In this paper, we propose a novel approach for the multi-response optimization by

incorporating fuzzy logic into desirability function. The present method is illustrated by an EDM data of Lin and Lin [2].

Key words :

1. Introduction

The Taguchi method is one of the most popular techniques
for finding an optimum operating condition of manufacturing
process parameters. In order to evaluate process performances,
Dr. Taguchi proposed to use a signal-to-noise ratio, which is
obtained from realizations of process performance variable. In
the Taguchi method, orthogonal array designs of experiments
are employed for comparing performances over various proc-
ess conditions and an optimum process setting is determined
by maximizing the signal-to-noise ratio. In spite of widespread
use in a variety of industrial fields, the Taguchi method has
some limitations. One of them is that multi-response variables
are poorly supported in the Taguchi method. As described in
the example of polysilicon deposition process design [3], the
final recommendation of the optimum condition with multiple
performance characteristics is left to engineering judgement.

It is not very difficult to find that a manufacturing process
in general has several response variables. Consider an elec-
trical discharge machining (EDM) process in which a metal
cutting is conducted. Main response variables in this process
include electrode wear weight, machined surface roughness,
material removal rate, and so on. These process response vari-
ables are affected by process parameters such as polarity of
workpiece, pulse-on time, duty factor, open discharge voltage,
discharge current, dielectric fluid, and so on. At this point, a
multi-response optimization problem is established because an
optimum parameter setting should be determined by simulta-
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neously considering electrode wear weight, machined surface
roughness, and material removal rate. For more technical ex-
planations on EDM process, the reader is referred to DeGarmo
et al. [4].

In order to solve such multi-response problems, Taguchi
recommended individually conducting single response opti-
mizations and then compromising the results. However, his
procedure is apt to suffer from uncertainty involved in deci-
sion making process. To overcome this difficulty, some alter-
natives have been studied. They are broadly divided into re-
sponse modelling based mathematical programming approach
and simultaneous optimization approach. Among them, this pa-
per is concerned with the latter. For the former, the reader is
referred to Myers and Montgomery [5].

A key step of simultaneous optimization is to define an
overall performance index from multi-response variables. One
such simplest form would be a weighted average. It is of
course assumed that weights are known a priori. A utility
function, one form of weighted averages, is employed by
Grabiec & Piasta [6] in order to deal with four cement paste
properties. The notion of utility function can be generalized by
the desirability function enhanced by Derringer & Suich [7].
Because it is useful to describe satisfaction levels increased as
the response variable approaches to its target, desirability
function frequently appears in the statistical literature [5]. For
example, Tong et al. [8] recently used desirability functions to
conduct the Taguchi method with two biological process
variables. On the other hand, Antony [9] proposed using prin-
cipal component analysis to obtain a composite performance
index without predetermined weights. More precisely speaking,
in that method, weights are as good as directly computed
from experimental data. It is noted that, in using such data-de-
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pendent scores, there is a risk of producing results far from
designer's expectation.

How to consider the preference between multi-response var-
iables is very crucial in establishing an overall performance
index and, however, it has a fuzzy aspect in nature. In order
to tackle this nature,” a fuzzy logic approach is presented by
Lin et al. [1]. Although still not incorporated with relative im-
portance, their approach has a contribution that modelling the
vagueness in multi-response performance evaluation is at-
tempted by fuzzy logic.

This paper presents a generalization of works done by Lin
et al. [1] for dealing with both variable importance and evalu-
ation vagueness. This is accomplished by embedding desir-
ability functions onto fuzzy logic. To illustrate the present
method, an experimental data of Lin and Lin [2] is used.

2. Fuzzy Logic with Desirability

2.1 Desirability Function

The desirability function technique popularized by Derringer
& Suich [4] is one of useful approaches for the simultaneous
multi-response optimization. By this function, a response varia-

ble y ; is converted into an individual desirability ¢ .. The

desirability takes a value between 0 and 1 and it represents
the closeness of a response to its target value. The optimum
setting is finally chosen by maximizing the composite desir-
ability defined as a geometric mean of the individual desir-
ability, i.e.,

D= (dy X dy XX d,, )" (1)

where 4, denotes the number of response variables.
The individual desirability function for the larger-the-better
response is defined as

d:(ﬂmLJ > Vmin SySymax
ymax_ymin

where y . is a minimum value of 4y, is a maximum

y max
value of y, and , is the weight specified for y. If =1,
the desirability function becomes linear. Choosing )] places
more emphasis on being close to the target value, and taking
0< »¢1 makes this less important. In the similar manner, the
desirability is obtained by

d:(.__y"‘i.l] kd ymin Sysymax
Yimax ~ Vin

for the smaller-the-better response variable. If y is the-nomi-
nal-the-best, the two-sided desirability function is given by

(M‘i) y Yo SY<T

T_ymin
d= .
Yinax — ¥
smax 7 s T<y< N
(ymax_—TJ Y= Vona
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where T denotes the target value and » and § are weights.
For more descriptions on desirability functions, the reader is
referred to Myers and Montgomery [5].

If the relative importance between response variables is
available, the overall desirability function (1) is generalized in-
to the following [10]:

D= (dllﬂl 1% d;f': 3o X d;l,;" )l/(“71+“72+"'+“7",) (2)

where g, is an importance of y .. In this paper, we use (2)
to obtain the composite desirability assuming all of individual
desirability functions are linear, i.e., p=js=1.

2.2 Fuzzy Logic Approach

As done by Lin et al. [1], the fuzzy logic can be consid-
ered as an alternative method for the simultaneous opti-
mization with multi-response variables. A fuzzy logic system
consists of fuzzifier, computational unit, rule base, and de-
fuzzifier as shown in Figure 1. Each input is fuzzified by its
membership functions. Computational unit then conducts a
fuzzy reasoning using rule base and max-min compositional
operations. The resulting fuzzy value is finally defuzzified into
a single output, which is employed as an overall performance
index in Lin et al. [1].

Rule
Base
|

Computational
Unit

Input — | Fuzzifier [—» — | Defuzzifier | —»Output

Figure 1. A Schematic Diagram of Fuzzy Logic

However, as pointed out earlier, variable preference is not
fully considered within such fuzzy logic approach.
Accordingly, we introduce a notion of desirability to fuzzy
logic system in this paper. This is accomplished by using the
desirability function (2) to construct the fuzzy rule base. This
will be described in Section 3.2.

First consider a three-input-and-one-output problem. Let
xy x, and x, denote three inputs respectively and let y

denote output. Rules in the rule base can be stated as:

o If x,is Ay, x,is By, x4 is Cy, then y is Dy else;

o if x, is Ay x, is By, x, is C,, then is D2 else;
1 2 3 y

e if X is Ax, Xy is By, X is Cy, then y is Dx.

where £ is the number of rules in the rule base and A;, B,
Ci and D; are fuzzy subsets defined by corresponding member-
ship functions of x,, x, and x, and y, i€, u , {x ;)
2 5%y polxg) and g p(y). In this paper, as done in
Lin et al. [7], simple linear functions are used in order to rep-
resent fuzzy set memberships as illustrated by the following
Figures 2 and 3.
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In this paper, as shown by the above figures, three fuzzy
subsets are assigned for each of input variables and five fuzzy
subsets are assigned for output variable.

3. Multi-response Optimization in the Taguchi
Method

3.1 Experimental Desigh and Data

electrode wear rate (EWR), machined surface roughness
(MSR), and workpiece removal rate (WRR). In order to find
the optimum operating condition, the Taguchi design of ex-
periment is conducted. As in other machining processes, many
parameters are involved with EDM. Among them, six parame-
ters are selected for the experiment as shown by Table !.

Table 1. Parameters and Levels [2]

Parameter Unit Level

1 2 3
. Workpiece Polarity - ) ) N/A
B. Pulse-on Time us | 20 | 150 | 300
C. Duty Factor - 0.3 0.5 0.7
D. Open Discharge Voltage \% 100 120 150
E. Discharge Current A 1.5 4.0 6.0
F. Dielectric Fluid g/l 2 4 8

An orthogonal array I ,(2'x37) is adopted for the ex-
perimental design and three samples are machined at each ex-
perimental setting. The experimental design and data are given

‘in Table 2.

Orthogonal array designs are widely used for industrial ex-
periments because they reduce the number of experimental
runs. In our case, there are 21x35=486 runs for the full
experiment. Table 2 shows only 18 conditions among them.

In the Taguchi method, signal-to-noise ratios are proposed
for performance criteria to compare experimental settings.
These are computed as:

EWR} + EWR} + EWR?
S/ Ny, =10log ' 2 i,

3

In order to illustrate our proposed method, we use electrical MSR} + MSR? + MSR;

discharge machining (EDM) data reported by Lin and Lin [2]. S/N s =10log 3 ’

EDM process removes workpiece using an electrical spark

erosion. [ts operational performance is in general evaluated by and

Table 2. Experimental Design and Data of EDM Process [2]
No. | A | B c | o lE F EWR (%) MSR (mm) WRR (g/min)
1 1 1 1 1 1 1 32.21 38.57 2524 | 0.00149] 0.00117| 0.00139 3.02 3.17 2.07
2 1 1 2 2 2 2 23.96 25.02 27.29| 0.00382| 0.00408| 0.00276 2.67 3.48 347
3 1 1 3 3 3 3 29.19 25.19 23.66 | 0.00324| 0.00356| 0.00361 5.61 3.92 435
4 1 2 1 1 2 2 7.16 8.72 6.31] 0.00452| 0.00413| 0.00322 3.62 3.73 3.65
5 1 2 2 2 3 3 3.55 3.62 3.04 | 0.00451| 0.00461| 0.00384 3.50 457 4.27
6 1 2 3 3 1 1 33.06 57.18 53.62 | 0.00323| 0.00128] 0.00134 2.50 343 3.32
7 1 3 1 2 1 3 44 .95 61.10 38.39 | 0.00125| 0.00128| 0.00141 487 2.58 3.15
8 1 3 2 3 2 1 10.79 3.74 5.57 | 0.00321| 0.00303| 0.00323 3.20 2.9 2.18
9 1 3 3 1 3 2 5.80 2.49 §40 | 0.00316| 0.00348| 0.00345 2.23 245 2.80
10 2 1 1 3 3 2 24.71 7.92 21.28 | 0.00028] 0.00034| 0.00031 1.78 2.00 2.06
11 2 1 2 1 1 3 179.17 5.02 52.54 | 0.00016| 0.00166] 0.00039 1.65 1.71 1.74
12 2 1 3 2 2 1 28.23 37.80 30.56 | 0.00041| 0.00027{ 0.00024 5.62 3.98 5.96
13 2 2 1 2 3 1 17.31 2097 16.18 | 0.00017| 0.00021| 0.00023 2.65 1.53 3.50
14 2 2 2 3 1 2 99.21 76.35 74.34 | 0.00042| 0.00049| 0.00051 2.36 1.50 2.32
15 2 2 3 1 2 3 39.62 66.67 21.74 | 0.00018] 0.00011| 0.00023 1.63 2.33 2.30
16 2 3 1 3 2 3 47.89 21.54 | 101.72 ] 0.00024| 0.00043]| 0.00019 4.45 4.06 443
17 2 3 2 1 3 1 30.00 57.32 10.53 | 0.00023| 0.00027| 0.00032 343 2.08 3.67
18 2 3 3 2 1 2 94.66 9936 | 111.36 | 0.00044| 0.00052| 0.00044 1.89 1.82 217
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WRR> + WRR;*> + WRR;*

S/ Ny =10log 3

Recall that EWR and MSR are the-smaller-the-better char-
acteristics and WRR is the-larger-the-better one. Because the
signal-to-noise ratio is a measure of variation, the larger varia-
tion results in the smaller signal-to-noise ratio. Thus an opti-
mum EDM parameter setting is chosen by maximizing the
three signal-to-noise ratios. For more details on the Taguchi's
signal-to-noise ratio, the reader is referred to Phadke [3]. In
this paper, the above signal-to-noise ratios are used as input
variables of the fuzzy logic system.

3.2 Analysis and Results

For the purpose of illustrations, the relative importance of
EWR, MSR, and WRR are assumed as 4 =5, w,=3, and
w3 =2 respectively. First, the desirability computed from the

three signal-to-noise ratios is analyzed. The analysis of var-
iance (ANOVA) is given in Table 3. This was obtained by
using MINITAB [12], a well-known commercial software for
statistical analysis.

Table 3. ANOVA on Composite Desirability

Source of| Degrees of | Sum of | Mean of F p
Variation | Freedom | Squares | Squares
A 1 0.7454 0.7454 67.53 0.001
B 2 0.0335 0.0168 1.52 0323
C 2 0.0655 0.0328 2.97 0.162
D 2 0.0086 0.0043 0.39 0.700
E 2 0.1952 0.0976 8.84 0.034
F 2 0.1093 0.0546 4.96 0.083
A*B 2 0.0179 0.0089 0.81 0.507
error 4 0.0442 0.0110
Total 17 1.2197

A and B is included in Table 3. But its effect looks
insignificant. More details on ANOVA and F-test, the reader
is referred to MINITAB [12]. MINITAB also provides main
effect plots of parameters in Figure 4. )
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Figure 4. Main Effect Plots on Composite Desirability

By these plots, we can see that parameters A, E and F
have relatively more significant effects on composite desir-
ability, which is same as mentioned in the previous ANOVA
table. Moreover, the optimum EDM operation setting which
maximizes the overall desirability is chosen as AB;C;D;E;F»
from the plots.

Now the fuzzy logic approach with desirability proposed in
this paper is illustrated. First, signal-to-noise ratios are con-
verted into fuzzy membership values. Next, fuzzy reasoning
should be subsequently conducted by using the fuzzy rule
base, which is given by Table 4.

Table 4. Fuzzy Rule Base for EDM Variables

ANOVA s one of the most popular methods to analyze ex-

perimental data provided as the form of Table 2. An im-
portant objective of ANOVA is to show the relative im-
portance of parameters.* This is accomplished by decomposing
total sum of squares into two parts: sums of squares due to
parameters and sum of squares due to error. In the present
case study, parameter A (i.e., workpiece polarity) has the larg-
est sum of squares (SS), which indicates that it is the most
dominant parameter. Mean of squares (MS) is obtained by

MS = SS/( degrees of freedom).

An F-value represents the relative magnitude of the parameter
effect compared with the error effect. For example,

FA:MS A /MS errar=0.7524/0 0010=6753

indicates that the effect of workpiece polarity is 67.53 times
larger than the error. P-value is defined as the probability that
F-statistic is larger than the F-value in the statistical F-test.
Therefore, as the F-value increases, the corresponding P-value
approaches to zero. The smaller P-value means the higher sig-
nificance of the corresponding parameter effect. Other than
main effects of parameters, an interaction between parameters
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WRR
EWR MSR
Small Middle Large
Small Vs VS VS
Small Middle \S S S
Large S S S
Small S S S
Middle Middle S M M
Large M M L
Small S M M
Large Middle M L L
Large L VL VL

Constructing this table can be described as follows. Because
we assigned three subsets (Small, Middle, and Large) to input
variable, individual desirability is also divided into three areas
as shown in Figure 5. In this figure, medians are respectively
given as ¢ .y =0.17, d yqe=0.50, and & . =0.83.
For example, if (EWR, MSR, WRR) corresponds to (Small,
Large, Large), the overall desirability is calculated by

D = (3 %y X}, ) 0
=(0.17° x0.83% x0.83%)"""°
=0.376
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from Equation (2). We can see that this value is correspond-
ing to the subset 'Small' in Figure 3. All of the rules stated in
Table 4 can be obtained in the same way. This is how desir-
ability is embedded onto the fuzzy logic system in this
research.

1 >

P e
e =0.83 T Large
/,/
7
yd
4 uar =050+ D’Ild/dre
e
d,s'mall=0' 17 4

0

Figure 5. Three Divisions and Medians of Individual
Desirability

Conducting max-min operations is needed to produce fuzzy
output values [11]. Accordingly, membership function of out-
put of the fuzzy reasoning can be written by

Hoyr(¥) = ml_ax Min[£ gy, (1))s Hasi (12 )s Ly 03 s o (V)]

where ;=1,2,...,27 and 3, 7, and 5, are sig-
nal-to-noise ratios of EWR, MSR, and WRR respectively.
Using center-of-gravity method [I1], we can finally obtain a
defuzzified output as

)= Zy,uour )
2 Hour(»)

This is employed as the overall performance criterion for
the present multi-response EDM process. In this study, p* is
supposed to fall between 0 and 1 and it is the larger-the-better
characteristic as is the desirability.

Analysis of variance on ~y« is provided in Table 5. More
strong significant effects are observed for parameters A and E.
Main effect plots are depicted in Figure 6 and they recom-
mend AB.C,DEsF; as an optimum condition of the EDM
process.

Table 5. Analysis of Variance on yx

Source of | Degrees of | Sum of | Mean of
.. F P
Variation | Freedom | Squares | Squares
A 1 04278 | 0.4278 33.06 0.005
B 2 00110 | 0.0055 0.43 0.679
C 2 0.0131 0.0066 0.51 0.637
D 2 0.0033 0.0017 0.13 0.883
E 2 0.1079 | 0.0540 417 0.105
F 2 0.0278 | 0.0139 1.08 0.423
A*B 2 0.0136 | 0.0068 0.52 0.628
error 4 0.0518 0.0129
Total 17 0.6564

T ¥ T i T T ¥

1 2 3 1 2 3 1

ne o
w

Figure 6. Main Effect Plots on yx

4. Conclusion

In this paper, a fuzzy logic approach incorporated with de-
sirability functions is proposed for a multi-response opti-
mization problem in the Taguchi method. The proposed ap-
proach has a distinction that it is capable of accommodating
relative importance between response variables. EDM ex-
perimental data by Lin and Lin [2] is used for illustrating the
present method. Whereas the desirability function technique
recommends A;Bi;C,DiEsF2 as an optimum setting, our pro-
posed approach recommends A;By(3)C:D(EsF,. As far as the
optimum settings are concerned, no disagreement is found for
significant parameters. However, parameter D shows a small
but definite difference, which indicates that the proposed
method has a capability of accommodating variable importance
for multi-response optimization in the Taguchi method.

As stated- earlier, for the present procedure to be opera-
tional, relative importance should be known a priori. The in-
fluence of incorrect information upon analysis results deserves
further investigating. Although not dealt with in this paper,
how to design membership functions embedded with desir-
ability is also fruitful for the future research.
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