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Multi-Level Response Surface Approximation
for Large-Scale Robust Design Optimization Problems®*
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m Abstract m

Robust Design (RD) is a cost-effective methodology to determine the optimat settings of control factors that make
a product performance insensitive to the influence of noise factors. Tosbetter facilitate the robust design optimization,
a dual response surface approach, which models both the process mean and standard deviation as separate response
surfaces, has been successfully accepted by researchers and practitioners. However, the construction of response surface
approximations has been limited to problems with only a few variables, mainly due to an excessive number of experimental
runs necessary to fit sufficiently accurate models. In this regard, an innovative response surface approach has been
proposed to investigate robust design optimization problems with larger number of variables. Response surfaces for
process mean and standard deviation are partitioned and estimated based on the multi-level approximation method,
which may reduce the number of experimental runs necessary for fitting response surface models to a great extent.
The applicability and usefulness of proposed approach have been demonstrated through an illustrative example.
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1. Introduction

Off-line quality control has received a lot of at-
tention from researchers as well as practitioners
since introduced by Taguchi [6]. The off-line qual-
ity control encompasses cost-effective activities
designed to improve the product’s quality, manu-
facturability and reliability during the product and
process design stages. It basically consists of three
phases : system design, parameter design, and tol-
erance design. The system design is the phase of
the product design process where the general prod-
uct concepts are generated and established. The
parameter design is concerned with the opti-
mization of the system identified in the previous
stage. Finally, the tolerance design is intended to
capture and reduce the variability in the output.
Among the three design phases, the parameter de-
sign is the most important and crucial phase since
it can provide the means for both reducing costs
and improving quality. In parameter design, the op—
timum settings of control factors are determined to
minimize the performance sensitivity to noise fac-
tors, which is called ‘robust design’. The primary
goal of Taguchi’s concept of robust design is to
obtain a target condition on the mean while mini-
mizing the variance. Taguchi advocates the use of
signal-to-noise (SN) ratios to achieve this goal. Al-
though the inclusion of noise factors for design op-
timization has been considered as an innovative con-
cept by researchers, there is a general consensus
that several shortcomings are inherent in the Ta-
guchi’s approach. First, the Taguchi method lacks
a sequential formal investigation for the purpose of
optimization. Second, orthogonal arrays are not
convincing, particularly when there are high inter-
actions among control and noise factors. Finally, as
a heuristic tool to minimize the quality loss, the uni-

versal use of SN ratio is not convincing (see Box [1]).

To rectify these problems, there has been such
an effort to implement the robust design principle
within the framework of well-established statistical
analysis. The use of a dual response surface ap-
proach, suggested by Myers and Carter [3] and po-
pularized by Vining and Myers [7], has received the
most attention due to its greater degree of empirical
modeling for both process mean and variance. Se-
parately modeling process mean and variance thro-
ugh experimental data, a dual response surface ap—
proach achieves the goal of robust design by mini-
mizing the variance subject to the process mean
kept at the target. Let p(z) and o(z) represent the
fitted response functions for the mean and the
standard deviation of the quality characteristic, res—
pectively. Assuming a second-order polynomial mo-
del for the response functions, the response func—
tions for process mean and standard deviation may
be written as
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respectively.

However, the construction of response surface
approximations has been limited to problems with
only a few variables, mainly due to an excessive
number of experimental runs necessary to fit suffi-
ciently accurate models. Recently, Koch et al. [2]
and Perry et al. [4,5] proposed an innovative re-
sponse surface approach to accommodate larger
number of variables. Koch et al. [2] partitioned the
experimental regions of interest to model complex
systems, which usually involve a large number of
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design variables. It have been demonstrated, thro-
ugh an illustrative example of designing commer—
cial turbofan engine, that the number of experi-
mental runs may significantly be reduced. Perry et
al. [4,5] also suggested the use of partition ex—
perimental designs for analyzing a sequential proc—
ess with a large number of design variables. The
reasoning behind the partitioned experimental de-
signs may also be applied to the problem of robust
design optimization, where the response surfaces
for process mean and standard deviation need to
be estimated separately. That is, response surfaces
for process mean and standard deviation are parti-
tioned and estimated based on the multi-level ap-
proximation method, which may significantly re-
duce the number of experimental runs necessary
for fitting response surface models. The experi-
mental layout may be obtained by combining the
concepts of fractional factorial design and central
composite design. This article is organized as fol-
lows : The concept of multi-level response surface
approximation is discussed in Section 2, based on
which a large-scale robust design optimization
scheme is developed as described in Section 3. The
usefulness and applicability of proposed approach
to robust design are demonstrated through an illus-
trative numerical example in Section 4, which is
followed by concluding remarks in the last section.

2. Multi-Level Response Sur-
face Approximation

The usefulness of response surface methodology
(RSM) for the purpose of robust design optimi-
zation has been recognized in a wide variety of in-
dustrial applications. One significant limitation of
traditional response surface techniques is due to the
problem of size for modeling large-scale systems.

An excessive amount of expense may be incurred
mainly because of the combinatorial explosion in
data points necessary for fitting models with a large
number of variables. For complex systems, the
number of variables affecting the system’s per-
formances is often greater than desirable for tradi—
tional response surface methodology. Koch et al. [2]
proposed an approach for constructing multi-level
partitioned response surfaces to overcome the pro-
blem of size with large-scale systems. The factors
and responses of a complex system are grouped,
and the response surface models themselves are
partitioned to create multi-level models incorporat-
ing the effects of all factors.

The modeling framework of Koch et al. [2] may
be summarized as follows : Suppose that there are
two responses of interest for a particular system.
Let » be the number of factors associated with the
system. The factors are to be partitioned into two
sets. The first response, denoted by v, is fit as
a function of the & factors, and the second response,
denoted by ., is then fit as a function of the re-
maining (n—k) factors. Two separate experiments
are designed and concurrently run to fit these two
response surfaces as shown in equation (3) and
equation (4).
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To capture the effects of factors k+1 through
n on the first response, the intercept term of the
first response, «, is fit as a function of these fac-
tors. The same is done for the second response us-
ing factors 1 through & as shown in equation (5)
and equation (6).
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The effect of modeling the intercept term of each
response as a response surface itself is essentially
to allow the intercept of the primary response sur-
face to move along the response axis with the sec-
ondary effects of the factors used to model intercept
term. The defining aspect of this approach is that
the model fitting expense associated with ex-
perimental runs is reduced tremendously. If, for ex-
ample, 16 factors are known to be significant to the
responses of a system, more than 65,000 experi-
mental runs are required to fit response surfaces
using the standard central composite design (CCD).
Partitioning these 16 factors into two sets of 8 fac-
tors, only 273 experimental runs are required for
the standard CCD.

Later and Perry et al. [4, 5] investigated the ap-
plication of partition experimental designs to obtain
the optimum settings of design variables for se—
quential processes. They recommended the use of
small composite design (SCD) instead of standard
CCD. In SCD experiments, axial and center point
runs are combined with factorial components ob-
tained from fractional factorial design. It is also
noted that the experimental data from SCD experi-
ments should be carefully analyzed since the design
efficiency may be reduced due to the .alias structure
in the fractional portion of experimental runs. Thus,
it will be desirable to employ fractional factorial de-
signs with higher resolutions if applicable. This
study also employs an SCD experiment to obtain
estimated response functions for process mean and
standard deviation for the purpose of robust design
with a larger number of variables, so—called a large-
scale robust design, which is outlined in the follow-

ing section.

3. Large-Scale Robust Design
Optimization

Taguchi’s philosophy for robust design emanates
from the definition of quality in terms of loss im—
parted to the society from the time a product is
shipped. There is an ideal target value for the qual-
ity characteristic from the customer’s viewpoint.
‘The main idea is that loss is always incurred when
a product’s quality characteristic deviates from its
target value, regardless of how small the deviation
is. From this definition, a loss function is developed
to measure the deviation of a product's quality
characteristic from its target value in a monetary
value. Various loss functions have been discussed
in the literature of statistical decision theory. How—
ever, a simple quadratic function may be reasonable
for many situations. Let Z(y) be a measure of losses
associated with the quality characteristic ¥, whose
target value is r, then the quadratic loss function
is given by (Taguchi [6]).

Liy) =k(y—1)?,

where k is a positive loss coefficient. It is well
known that the expected value of the quadratic loss
function can be decomposed into bias and variance

as follows -
ElLyl=kl(p—1P+02].

This implies that the quality level of a product
is determined by both the process mean and stand-
ard deviation, so that simultaneous minimization of
process bias and variance is desirable. Dual re-
sponse surface approach (Myers and Carter [3])
suggests that the optimal settings of factors may
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be obtained by separately modeling the process
mean and standard deviation using RSM as shown
in equation (1) and equation (2).

As discussed earlier, however, the usual RSM
may not be applicable when there exist a number
of factors affecting the mean and standard devi-
ation. Multi-level response surface approximations
may efficiently be incorporated to overcome this
drawback. Replacing y, in equation (3) and v, in
equation (4) with £ and &, respectively, one may
obtain the response surfaces for process mean and
standard deviation even with a large number of
factors. It is worth noting that how to partition the
factors of interest may be critical to obtain accurate
approximations for each response. Arbitrary parti-
tioning may not be desirable since some of the fac-
tors mostly affecting the process mean may be allo-
cated to approximate the standard deviation and
vice versa. It is not often the case that all the factors
of interest have a significant effect on both the pro-
cess mean and standard deviation. Screening ex-
periments may be conducted to determine which
factors have a significant effect on process mean
and/or standard deviation. Factors significantly af-
fecting the process mean may be allocated to ap-
proximate the mean response 7, and remaining fac—
tors may be used to estimate the intercept term.
On the other hand, factors mostly affecting stand-
ard deviation may be assigned to approximate the
corresponding response &, of which the intercept
term may be estimated using the factors affecting
the process mean.

The partition of experimental design is now de-
monstrated for the robust design problem with six
factors, denoted by A through F. The following si-
mulated response functions for process mean and

standard deviation are used :

alz) =140.0 —5.04 +7.5B—3.5C
+2.0E ~3.5BD + N (0,3.0%) ("N
and o(x) =1.5+0.068-0.1C
+0.15F— 0.1F+0.07EF+ N(0.0.12) (8)

A screening experiment may be conducted to de—
termine which factors affect process mean and/or
standard deviation. A 2°~? fractional factorial ex-
periment with resolution 7V is conducted. As ex-
pected, main effects A, B, C, E, and two factor in—
teraction BD turns out to have a significant effect
on process mean, whereas B, C, E, F, and EF are
signifiant factors for standard deviation. Based on
the results from screening experiments, each factor
needs to be divided into two partitions. It is desir-
able that main effects associated with significant
interactions belong to the same partition since the
interaction effects between factors from different
partitions are not estimable in partitioned ex—
perimental designs (Koch et al. [2]). Thus, main ef-
fects B and D are assigned to one partition while
E and F are to the other partition. For the remaining
main effects, it is reasonable to assign A and C to
different partitions. Consequently, factors A, B, and
D constitute one partition while C, E, and F are allo-
cated to the other partition. Axial and center point
runs are now added to each partition to complete
the construction of SCD. The value of « is chosen
as ¥F to ensure the design rotatability, where #
is the total number of factorial runs across par-
titions. The number of center points may be de-
termined by condition number, which represents
the measure of orthogonality. In this example, three
center points for each partition appears to be suf-
ficient. All the design points and corresponding si-
mulated responses are summarized in <Table 1>,
It is worth noting that design points in block 1 in-
dicate the screening runs, and axial and center point
runs are sequentially conducted and placed in block
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<Table 1> Design Points and Simulated Responses

Block Partition 1 Partition 2 /l 5
A B D C E F
1 -1 -1 -1 -1 -1 -1 133113 150275
1 1 -1 -1 -1 1 -1 129.300 165382
1 -1 1 -1 -1 1 1 159.317 1.94536
1 1 1 -1 -1 -1 1 146963 127450
1 -1 -1 -1 1 1 1 135833 141078
1 1 -1 -1 1 -1 1 120983 1.09230
1 -1 1 1 1 -1 -1 149,701 1.38684
1 1 1 -1 1 1 -1 144142 1.70557
1 -1 -1 1 -1 -1 1 150989 1.231%
1 1 -1 1 -1 1 1 138494 1.55425
1 -1 1 1 -1 1 -1 151.25 1.88316
1 1 1 1 -1 -1 -1 142,542 1.64793
1 -1 -1 1 1 1 -1 138619 165875
1 1 -1 1 1 -1 -1 123729 1.31921
1 -1 1 1 1 -1 1 140.042 1.05699
1 1 1 1 1 1 1 135915 160179

2. It is also pointed out that less than 30 runs are
performed in this case whereas as many as 90 ex-
perimental runs may be required to run the stand-
ard CCD with six factors.

4. An Illustrative Example :
Analysis

The results from the statistical analysis for ex-

ample case presented in Section 3 are further elabo-
rated in this section. The ANOVA tables for scre-
ening experiments with respect to process mean
and standard deviation are provided in <Table 2>
and <Table 3>, respectively. These results are

based on the experimental runs from the block 1.
All the factors shown in simulated response func—
tions turn out to be significant for each response.
In addition, main effect D is also significant with
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(Table 2> Analysis of Variance for Screening Experiments with respect to Process Mean

Source SS DF MS F P-Value
A 45533 1 455.33 71.06 < 0001
B 950.95 1 950.95 160.93 < 0001
C 283.29 1 283.29 474 < 0.001
D 3878 1 3878 6.56 0.031
E 64.34 1 64.34 10.89 0.009
BD 179.93 1 179.93 30.45 < 0.001

Error 5318 9 591

Total 2025.80 15

(Table 3) Analysis of Variance for Screening Experiments with respect to Standard Deviation

Source SS DF MS F P-Value
B 0.06943 1 0.06943 837 0.016
C 0.16428 1 0.16428 19.80 0.001
E 0.49753 1 0.49753 59.98 < 0.001
F 0.14143 1 0.14143 17.06 0.002
EF 0.06853 1 0.06853 8.26 0.017

Error 0.08295 10 0.00830

Total 1.02415 15

respect to process mean which is not included in
the simulated mean response. It is obvious, from
<Table 2>, that the main effects B and D should
be placed in the same partition along with A, and
the remaining main effects C, E, and F go to the
other partition.

{Table 4) Estimated Coefficients for Process
Mean Using All Runs

Term  Coefficient SE Coef. T P
Constant  140.334 04122 340465 < 0.001
A -4.844 04531  -10691 < 0.001
B 6.490 0.4531 14324 < 0.001
C -3.982 04531 -8788 < 0.001
E 1.865 04531 4117 0.001
BD -3.936 05397 7292 < 0.001

Sequentially conducting axial and center point
runs as shown in <Table 1>, the process mean and
standard deviation responses are analyzed using
response surface regression. The estimated co-

efficients for process mean and standard deviation
are summarized in <Table 4> and <Table 5>, res—
pectively. For mean response u, the values of R
and adjusted R? are 97.6% and 96.4%, respectively.
Sufficiently large values of R® and adjusted &
(93.0% and 90.1%, respectively) are also exarnined
for standard deviation response o.

(Table 5 Estimated Coefficients for Standard
Deviation Using All Runs

Term Coefficient SE Coef. T P

Constant 1478% 001565 94494 < 0.001
B 006497 001720 3777 0.001
C 00744 001720 4168 < 0.001
E 017839 001720 10400 < 0001
F -009004 001720 -523% <0001
EF 005078 002049 2479 0.023

Using the coefficients shown in <Table 4> and
<Table 5>, the estimated response functions for
process mean and standard deviation may be writ-
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ten as follows : usefulness of the proposed approach are demon-

strated through a numerical example.

@) = 140.334— 4.844.4 + 6.4908
—3.982C+ 1.865 5 3.936.BD

o(z) =1.479+0.065.8— 0.080C
+0.179E— 0.090 7+ 0.051LEF.

Comparing these with equation (7) and equation
(8), the above estimated functions closely resem-
bles the simulated functions.

5. Concluding Remarks

The multi-level partitioned response surface mo-
deling approach has been proposed to overcome the
problem of size for a complex system, where an
excessive number of experimental runs are requi-
red. It is demonstrated that a large-scale robust de-
sign problem may also be resolved with a moderate
number of experimental runs by using the two-lev-
el partitioned response surface methodology. Ex-
perimental runs from fractional factorial design are
combined with axial and center point runs to con-
struct the experimental design for a large-scale ro-
bust design optimization. The proposed approach
presented in this article may particularly be useful
for large—scale robust design problems in which the
number of variables prohibits standard response
surface experimentation and modeling, and the pro-
blem can easily be partitioned. The major assump-
tion in the proposed approach is that the interaction
effects between the factors of each partition are
negligible or nonexistent. However, many inter-
actions may be shown to be nonexistent by per-
forming screening experiments. The factors can
then be partitioned so that only the significant in-
teractions are to be included. The applicability and
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