• Title/Summary/Keyword: Probability Rainfall

Search Result 340, Processing Time 0.027 seconds

Uncertainty Assessment of Single Event Rainfall-Runoff Model Using Bayesian Model (Bayesian 모형을 이용한 단일사상 강우-유출 모형의 불확실성 분석)

  • Kwon, Hyun-Han;Kim, Jang-Gyeong;Lee, Jong-Seok;Na, Bong-Kil
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.5
    • /
    • pp.505-516
    • /
    • 2012
  • The study applies a hydrologic simulation model, HEC-1 developed by Hydrologic Engineering Center to Daecheong dam watershed for modeling hourly inflows of Daecheong dam. Although the HEC-1 model provides an automatic optimization technique for some of the parameters, the built-in optimization model is not sufficient in estimating reliable parameters. In particular, the optimization model often fails to estimate the parameters when a large number of parameters exist. In this regard, a main objective of this study is to develop Bayesian Markov Chain Monte Carlo simulation based HEC-1 model (BHEC-1). The Clark IUH method for transformation of precipitation excess to runoff and the soil conservation service runoff curve method for abstractions were used in Bayesian Monte Carlo simulation. Simulations of runoff at the Daecheong station in the HEC-1 model under Bayesian optimization scheme allow the posterior probability distributions of the hydrograph thus providing uncertainties in rainfall-runoff process. The proposed model showed a powerful performance in terms of estimating model parameters and deriving full uncertainties so that the model can be applied to various hydrologic problems such as frequency curve derivation, dam risk analysis and climate change study.

Comparison Study on the Various Forms of Scale Parameter for the Nonstationary Gumbel Model (다양한 규모매개변수를 이용한 비정상성 Gumbel 모형의 비교 연구)

  • Jang, Hanjin;Kim, Sooyoung;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.331-343
    • /
    • 2015
  • Most nonstationary frequency models are defined as the probability models containing the time-dependent parameters. For frequency analysis of annual maximum rainfall data, the Gumbel distribution is generally recommended in Korea. For the nonstationary Gumbel models, the time-dependent location and scale parameters are defined as linear and exponential relationship, respectively. The exponentially time-varying scale parameter of nonstationary Gumbel model is generally used because the scale parameter should be positive. However, the exponential form of scale parameter occasionally provides overestimated quantiles. In this study, various forms of time-varying scale parameters such as exponential, linear, and logarithmic forms were proposed and compared. The parameters were estimated based on the method of maximum likelihood. To compare the accuracy of each scale parameter, Monte Carlo simulation was performed for various conditions. Additionally, nonstationary frequency analysis was conducted for the sites which have more than 30 years data with a trend in rainfall data. As a result, nonstationary Gumbel model with exponentially time-varying scale parameter generally has the smallest root mean square error comparing with another forms.

Flood Damage Reduction Plan Using HEC-FDA Model (HEC-FDA 모형을 이용한 홍수피해 저감계획)

  • Lee, Jongso;Kim, Duckhwan;Kim, Jungwook;Han, Daegun;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.237-244
    • /
    • 2015
  • This study is estimated the flood damage probability of the flood discharge, the flood stage estimation and Economic Analysis for Flood Control about considering of uncertainty. Sum River Basin has chosen and the probability precipitation is estimated by using the concept of critical rainfall duration depending on the frequency of each flood stage estimation point. For calculating the expected annual damage, the functions of long term hazard, discharge-frequency, stage-discharge and depth-damage are established for 8 areas in Sum River Basin. The expected annual damaged is obtained which is based on the sampling informations through more than 500,000 simulation from the functions of considered uncertainty. The result about the optimum frequency and Investment Priorities are estimated by conducting the evaluation about planning the levee of various of Design Frequency. In analysis result, 12% of B/C value has increased if the uncertainty has concerned. Also the optimum frequency or Investment Priorities are possible to be changed. If the political and social analysis perform together it would be helpful to have a reasonable decision other than only the economical analysis as actual Flood damaged reduction planning.

A Study of New Modified Neyman-Scott Rectangular Pulse Model Development Using Direct Parameter Estimation (직접적인 매개변수 추정방법을 이용한 새로운 수정된 Neyman-Scott 구형펄스모형 개발 연구)

  • Shin, Ju-Young;Joo, Kyoung-Won;Heo, Jun-Haeng
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.2
    • /
    • pp.135-144
    • /
    • 2011
  • Direct parameter estimation method is verified with various models based on Neyman-Scott rectangular pulse model (NSRPM). Also, newly modified NSRPM (NMSRPM) that uses normal distribution is developed. Precipitation data observed by Korea Meteorological Administration (KMA) for 47 years is applied for parameter estimation. For model performance verification, we used statistics, wet ratio and precipitation accumulate distribution of precipitation generated. The comparison of statistics indicates that absolute relative error (ARE)s of the results from NSRPM and modified NSRPM (MNSRPM) are increasing on July, August, and September and ARE of NMNSRPM shows 10.11% that is the smallest ARE among the three models. NMNSRPM simulates the characteristics of precipitation statistics well. By comparing the wet ratio, MNSRPM shows the smallest ARE that is 16.35% and by using the graphical analysis, we found that these three models underestimate the wet ratio. The three models show about 2% of ARE of precipitation accumulate probability. Those results show that the three models simulate precipitation accumulate probability well. As the results, it is found that the parameters of NSRPM, MNSRPM and NMNSRPM are able to be estimated by the direct parameter estimation method. From the results listed above, we concluded that the direct parameter estimation is able to be applied to various models based on NSRPM. NMNSRPM shows good performance compared with developed model-NSRPM and MNSRPM and the models based on NSRPM can be developed by the direct parameter estimation method.

A by-pass rainwater penetration sewer system for urban flooding mitigation (도시침수 저감을 위한 by-pass 빗물침투성 우수관거)

  • Lee, Bum-Sub;Ko, Keon-Ho;Kang, Ho-Yeong;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.9
    • /
    • pp.799-807
    • /
    • 2016
  • The aim of this study is to determine and propose the by-pass rainwater sewer system in order to reduce the urban floodplain from the locality heavy rain every year during the dry season and the sinkholes in the city as well as the shortage of groundwaters due to extreme hot weather condition and urban heat island phenomenon. Heavy rain occurs more than the years of heavy rainfall probability, comparison between the place where uses the existing pipes and connect the sewer system with by-pass rain permeability and without expanding sewer pipe replacement at intersection of Gangnam station 3.07 ha at Gangnam-gu, Seoul Metropolitan area, it indicates that average of 27 million KRW (44%) maintenance cost savings and maintain existing sewer system without any other countermeasures. For the city flooded reduction, by-pass rainwater permeable rainwater pipe multiplying the probability the number of years during summer season and increase the water flow capacity during spring and fall when a small amount of rain that, it also contribute to the total amount of underground water secured through the by-pass penetration.

Potential damage assessment of inland wetlands by topsoil erosion (표토침식에 따른 내륙습지 훼손 가능성 평가)

  • Kim, Seongwon;Jeong, Anchul;Lee, Daeeop;Lee, Giha
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.7
    • /
    • pp.521-531
    • /
    • 2020
  • The purpose of this study is to suggest a quantitative assessment of wetland damage considering the effects of topsoil erosion and deposition from rainfall. In the Cheoncheon Basin located upstream of the Yongdam Dam, 16 wetlands are located, but the lacustrine and small palustrine wetland were analyzed for possible damage to erosion and deposition. As a result of applying typhoon events in 2002 and 2003, the sediment load from the upper basin was the highest at 2.30% (22,548 ㎥) of low water capacity. The average sediment load in the mountain areas was found to be 0.03% of the low water capacity, and it was analyzed to be less damaging than the lacustrine with relatively large watershed. as a result of the model, the lacustrine wetland, where a large area is used as agricultural land, shows a high probability of sediment yield, so it is highly likely to damage the wetland by topsoil erosion.

Regional Frequency Analysis by Rainfalls using GEV Distribution (GEV 분포에 의한 강우자료의 지역빈도분석)

  • Maeng, Seung-Jin;Lee, Hyeon-Gyu
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2006.11a
    • /
    • pp.403-407
    • /
    • 2006
  • This research aims to reduce severe damages to human beings and properties from floods that ravage Korea every year, by estimating right time to hydraulic structures based on the characteristics of variations in flood flows. To establish this permanent means for the flood mitigation, this research analyse design floods of various dams and hydraulic structures in connection with time of occurrence of the weather abnormalities in Korea. This research was derived the optimal regionalization of the precipitation data which can be classified by the climatologically and geographically homogeneous regions in Korea. Using the L-moment ratios and Kolmogorov-Smimov test, the underlying regional probability distribution was identified to be the GEV distribution among applied distributions. The regional and at-site analyses using L-moment for the design rainfall were tested by Monte Carlo simulation. Error tests were computed and compared with those resulting from at-site Monte Carlo simulation. Consequently, optimal design rainfalls following the regions and consecutive durations were derived by the regional frequency analysis.

  • PDF

Development of the Shortest Route Search Algorithm Using Fuzzy Theory (퍼지 추론을 이용한 최단 경로 탐색 알고리즘의 개발)

  • Jung, Yung-Keun;Park, Chang-Ho
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.171-179
    • /
    • 2005
  • This paper presents the algorithm using fuzzy inference that preestimates each link speed changed by different kinds of road situations. The elements we are considered are time zone, rainfall probability information and lane control information. This paper is consists of three parts. First of all we set up the fuzzy variables, and preestimate link speed changed by various road situations. For this process, we build the membership functions for each fuzzy variable and establish the fuzzy inference relations to find how fuzzy variables influence on link speed. Second, using backtracking method, we search the shortest route influenced by link speed changed by fuzzy inference. Third, we apply this algorithm to hypothetical network and find the shortest path. As a result, it is shown that this algorithm choose appropriate roundabout path according to the changing road situations.

2-D Inundation Analysis According to Post-Spacing Density of DEMs from LiDAR Using GIS (GIS를 활용한 LiDAR 자료의 밀도에 따른 2차원 침수해석)

  • Ha, Chang-Yong;Han, Kun-Yeun;Cho, Wan-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.1
    • /
    • pp.74-88
    • /
    • 2010
  • In this study, the points of LiDAR were modified in order to generate various DEM resolutions by applying LiDAR data in Ulsan. Since the LiDAR data have points with 1m intervals, the number of points for each resolution was modified to the size of 1, 5, 10, 30, 50, 100m by uniformly eliminating the points. A runoff analysis was performed on Taehwa river and its tributary, Dongcheon, with 200 year rainfall exceedance probability. 2-dimensional inundation analysis was performed based on the density of LiDAR data using FLUMEN, which was used to establish domestic flood risk map. Once DEM data obtained from LiDAR survey are used, it is expected that the study results can be used as data in determining optimal grid spacing, which is economical, effective and accurate in establishing flood defence plans including the creation of flood risk map.

A Linear Analysis of the Relation between Rainfall and Runoff for Peak Flow based on Geomorphologic IUH (지형학적(地形學的) 순간단위도(瞬間單位圖)에 의한 첨두유량(尖頭流量)의 강우(降雨)-유출(流出) 선형해석(線形解析))

  • Lee, Jung Sik;Kim, Jae Han;Lee, Won Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.55-64
    • /
    • 1987
  • The schemes synthesizing the instantaneous unit hydrograph(IUH) are presented by using the geomorphologic parameters of a basin. To this end, the channels in the network are numbered according to the Strahler scheme, and the mathematical formulation corresponding to a dynamic probability theory for deriving the geomorphologic IUH(GUH) is refered to the existing techniques adopted by Rodriguez-Iturbe and Valdes. Also, the mean runoff velocity is applied for expressing a dynamic state of flow. The applicability of the GUH to the real drainage basins is tested by using the data observed in a few basins with areas of the order of 9.2, 20, 33.63, and $109.73km^2$ in Korea. The test is carried out by checking the discrepancies between the observed and simulated values for the peak discharge and its time of occurrence which are the most important parameters of an IUH by varing the mean runoff velocity and the inputs. As a result, good agreement is found between them, and it is shown that the variability in peak discharge of hydrograph depends on the mean runoff velocity more than the constant loss rate.

  • PDF