• Title/Summary/Keyword: Prime ring

Search Result 358, Processing Time 0.028 seconds

LOCAL COHOMOLOGY MODULES WHICH ARE SUPPORTED ONLY AT FINITELY MANY MAXIMAL IDEALS

  • Hajikarimi, Alireza
    • Journal of the Korean Mathematical Society
    • /
    • v.47 no.3
    • /
    • pp.633-643
    • /
    • 2010
  • Let a be an ideal of a commutative Noetherian ring R, M a finitely generated R-module and N a weakly Laskerian R-module. We show that if N has finite dimension d, then $Ass_R(H^d_a(N))$ consists of finitely many maximal ideals of R. Also, we find the least integer i, such that $H^i_a$(M, N) is not consisting of finitely many maximal ideals of R.

ARTINIANNESS OF LOCAL COHOMOLOGY MODULES

  • Abbasi, Ahmad;Shekalgourabi, Hajar Roshan;Hassanzadeh-lelekaami, Dawood
    • Honam Mathematical Journal
    • /
    • v.38 no.2
    • /
    • pp.295-304
    • /
    • 2016
  • In this paper we investigate the Artinianness of certain local cohomology modules $H^i_I(N)$ where N is a minimax module over a commutative Noetherian ring R and I is an ideal of R. Also, we characterize the set of attached prime ideals of $H^n_I(N)$, where n is the dimension of N.

A REMARK ON GENERALIZED DERIVATIONS IN RINGS AND ALGEBRAS

  • Rehman, Nadeem Ur
    • The Pure and Applied Mathematics
    • /
    • v.25 no.3
    • /
    • pp.181-191
    • /
    • 2018
  • In the present paper, we investigate the action of generalized derivation G associated with a derivation g in a (semi-) prime ring R satisfying $(G([x,y])-[G(x),y])^n=0$ for all x, $y{\in}I$, a nonzero ideal of R, where n is a fixed positive integer. Moreover, we also examine the above identity in Banach algebras.

HIGHER CYCLOTOMIC UNITS FOR MOTIVIC COHOMOLOGY

  • Myung, Sung
    • Korean Journal of Mathematics
    • /
    • v.21 no.3
    • /
    • pp.331-344
    • /
    • 2013
  • In the present article, we describe specific elements in a motivic cohomology group $H^1_{\mathcal{M}}(Spec\mathbb{Q}({\zeta}_l),\;\mathbb{Z}(2))$ of cyclotomic fields, which generate a subgroup of finite index for an odd prime $l$. As $H^1_{\mathcal{M}}(Spec\mathbb{Q}({\zeta}_l),\;\mathbb{Z}(1))$ is identified with the group of units in the ring of integers in $\mathbb{Q}({\zeta}_l)$ and cyclotomic units generate a subgroup of finite index, these elements play similar roles in the motivic cohomology group.

SOME CONDITIONS FOR COMAXIMALITY OF IDEALS

  • Ahn, Sung Hun
    • Korean Journal of Mathematics
    • /
    • v.8 no.1
    • /
    • pp.19-26
    • /
    • 2000
  • In this paper, it is shown that if R is a commutative ring with identity and there exists a multiplicatively closed subset S of R such that $S{\cap}Z(R/(I_1I_2{{\cdots}I_n))={\emptyset}$ and $I_1R_s,I_2R_s{\cdots},I_nR_s$ are pairwise comaximal, then $I_1I_2{\cdots}I_n=I_1{\cap}I_2{\cap}{\cdots}{\cap}I_n={\cap}^n_{i=1}(I_i\;:_R\;I_1{\cdots}I_{i-1}I_{i+1}{\cdots}I_n)$.

  • PDF

THE q-ADIC LIFTINGS OF CODES OVER FINITE FIELDS

  • Park, Young Ho
    • Korean Journal of Mathematics
    • /
    • v.26 no.3
    • /
    • pp.537-544
    • /
    • 2018
  • There is a standard construction of lifting cyclic codes over the prime finite field ${\mathbb{Z}}_p$ to the rings ${\mathbb{Z}}_{p^e}$ and to the ring of p-adic integers. We generalize this construction for arbitrary finite fields. This will naturally enable us to lift codes over finite fields ${\mathbb{F}}_{p^r}$ to codes over Galois rings GR($p^e$, r). We give concrete examples with all of the lifts.

On Divisorial Submodules

  • DARANI, AHMAD YOUSEFIAN;RAHMATINIA, MAHDI
    • Kyungpook Mathematical Journal
    • /
    • v.55 no.4
    • /
    • pp.871-883
    • /
    • 2015
  • This paper is devoted to study the divisorial submodules. We get some equivalent conditions for a submodule to be a divisorial submodule. Also we get equivalent conditions for $(N{\cap}L)^{-1}$ to be a ring, where N, L are submodules of a module M.

Results of Graded Local Cohomology Modules with respect to a Pair of Ideals

  • Dehghani-Zadeh, Fatemeh
    • Kyungpook Mathematical Journal
    • /
    • v.58 no.1
    • /
    • pp.9-17
    • /
    • 2018
  • Let $R ={\oplus}_{n{\in}Z}R_n$ be a graded commutative Noetherian ring and let I be a graded ideal of R and J be an arbitrary ideal. It is shown that the i-th generalized local cohomology module of graded module M with respect to the (I, J), is graded. Also, the asymptotic behaviour of the homogeneous components of $H^i_{I,J}(M)$ is investigated for some i's with a specified property.

CONTINUOUS DERIVATIONS OF NONCOMMUTATIVE BANACH ALGEBRA

  • Park, Kyoo-Hong;Jung, Yong-Soo
    • Journal of applied mathematics & informatics
    • /
    • v.7 no.1
    • /
    • pp.319-327
    • /
    • 2000
  • In this paper we investigate the conditions for derivations under which the Singer-Wermer theorem is true for noncommutative Banach algebra A such that either [[D(x),xD(x)] ${\in}$ rad(A) for all $x{\in}$A or $D(x)^2$x+xD(x))$^2$${\in}$rad(A) for all $x{\in}$A, where rad(A) is the Jacobson radical of A, then $D(A){\subseteq}$rad(A).

ZERO-DIVISOR GRAPHS WITH RESPECT TO PRIMAL AND WEAKLY PRIMAL IDEALS

  • Atani, Shahabaddin Ebrahimi;Darani, Ahamd Yousefian
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.2
    • /
    • pp.313-325
    • /
    • 2009
  • We consider zero-divisor graphs with respect to primal, nonprimal, weakly prime and weakly primal ideals of a commutative ring R with non-zero identity. We investigate the interplay between the ringtheoretic properties of R and the graph-theoretic properties of ${\Gamma}_I(R)$ for some ideal I of R. Also we show that the zero-divisor graph with respect to primal ideals commutes by localization.