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ZERO-DIVISOR GRAPHS WITH RESPECT TO PRIMAL

AND WEAKLY PRIMAL IDEALS

Shahabaddin Ebrahimi Atani and Ahamd Yousefian Darani

Abstract. We consider zero-divisor graphs with respect to primal, non-
primal, weakly prime and weakly primal ideals of a commutative ring R

with non-zero identity. We investigate the interplay between the ring-
theoretic properties of R and the graph-theoretic properties of ΓI(R) for
some ideal I of R. Also we show that the zero-divisor graph with respect
to primal ideals commutes by localization.

1. Introduction

The idea of associating a graph with the zero-divisors of a commutative ring
was introduced by Beck in 1988, where the author talked about the colorings of
such graphs. By the definition he gave, every element of the ring R was a vertex
in the graph, and two vertices x, y were adjacent if and only if xy = 0 ([4]).
We adopt the approach used by D. F. Anderson and P. S. Livingston ([2]) and
consider only non-zero zero-divisors as vertices of the graph. The zero-divisor
graph of a commutative ring has been studied extensively by several authors
(see, for example, [2, 4, 5, 10, 11, 12]).

Redmond [13] introduced the definition of the zero-divisor graph with respect
to an ideal. Let I be an ideal of a ring R. The zero-divisor graph of R
with respect to I is an undirected graph, denoted by ΓI(R), with vertices
{x ∈ R − I : xy ∈ I for some y ∈ R − I} where distinct vertices x and y are
adjacent if and only if xy ∈ I. Therefore, if I = 0 then ΓI(R) = Γ(R), and I is
a non-zero prime ideal if and only if ΓI(R) = ∅ ([13]). The graphs ΓI(R) and
Γ(R/I) are different graphs. If fact for x, y ∈ R\I, if x + I is adjacent to y + I
in Γ(R/I), then x and y are adjacent in ΓI(R); while the converse is true only
when x+I 6= y+I (see [13, Theorem 2.5]). Hence the study of the graph ΓI(R)
is worthy of study. There are many basic open questions concerning the zero-
divisor graph with respect to an ideal. One of the essential questions is whether
a zero-divisor graph with respect to an ideal commutes with localization, and
in this case, what are the relations between the diameters (resp. girths) of such
graphs. We give a condition giving an affirmative answer to these questions.
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For the sake of completeness, we state some definitions and notations used
throughout. We will use R to denote a commutative ring with identity. We use
Z(R) to denote the set of zero-divisors of R; we use Z(R)∗ to denote the set
of non-zero zero-divisors of R. By the zero-divisor graph of R, denoted Γ(R),
we mean the graph whose vertices are the non-zero zero-divisors of R, and for
distinct x, y ∈ Z(R)∗, there is an edge connecting x and y if and only if xy = 0.
A graph is said to be connected if there exists a path between any two distinct
vertices. For two distinct vertices a and b in a graph G, the distance between a
and b, denoted d(a, b), is the length of the shortest path connecting a and b, if
such a path exists; otherwise, d(a, b) = ∞. The diameter of a connected graph
is the supremum of the distances between vertices. We will use the notation
diam(G) to denote the diameter of the graph of G. A graph is complete if it
is connected with diameter 0. A bipartite graph is a graph G whose vertex set
V can be partitioned into two non-empty sets V1 and V2 in such a way that
every edge of G joins a vertex in V1 to a vertex in V2. The girth of a graph
G, denoted gr(G), is the length of a shortest cycle in G, provided G contains a
cycle; otherwise, gr(G) = ∞.

An ideal I of R is called a radical ideal if I =
√

I. A ring R is called reduced
if it contains no non-zero nilpotent elements. It is easy to see that I is a radical
ideal of R if and only if R/I is a reduced ring. Denote by Min(I) the set of
minimal prime ideals of R containing I.

Let R be a commutative ring. A proper ideal P of R is said to be weakly
prime if 0 6= ab ∈ P implies that a ∈ P or b ∈ P ([3]). However, since 0 is
always weakly prime (by definition), a weakly prime ideal need not be prime.
We recall from [8] and [7], that an element a ∈ R is called prime (resp. weakly
prime) to an ideal I of R if ra ∈ I (resp. 0 6= ra ∈ I) (where r ∈ R) implies
that r ∈ I. Denote by S(I) (resp. w(I)) the set of elements of R that are
not prime (resp. are not weakly prime) to I. A proper ideal I of R is said to
be primal if S(I) forms an ideal (so 0 is not necessarily primal); this ideal is
always a prime ideal, called the adjoint ideal P of I. In this case we also say
that I is a P -primal ideal of R ([8]). Not that if r ∈ R and a ∈ S(I), then
clearly ra ∈ S(I). So what we require for I being primal is that if a and b are
not prime to I, then their difference is also not prime to I. For example assume
that R = Z the ring of integers and let I = 6Z. Then 2 and 3 are not prime to
I but 3−2 is prime to I, so I is not primal. A ring R is said to be primal if the
zero ideal is a primal ideal of R. Also, a proper ideal I of R is called weakly
primal if the set P = w(I) ∪ {0} forms an ideal; this ideal is always a weakly
prime ideal ([7, Proposition 4]). In this case we also say that I is a P -weakly
primal ideal. If R is not an integral domain, then 0 is a 0-weakly primal ideal
of R (by definition), so a weakly primal ideal need not be primal.

Assume that S is a multiplicatively closed subset of a ring R, X a non-empty
subset of R and I an ideal of R. Set S−1X = {a/s|a ∈ X, s ∈ S} ⊆ S−1R.
We say that a zero-divisor graph with respect to I commutes with localization
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if S−1(ΓI(R)) = ΓS−1I(S
−1R). The main goal of this paper is to show that

if I is primal (resp. weakly primal), then ΓI(R) commutes with localization.
Surely, there is much more work to be done.

Here is a brief summary of our paper. In Section 2, it is shown that (Theo-
rem 2.5), if I and J are P -primal ideals of R, then ΓI(R) = ΓJ(R) if and only
if I = J . It is proved that (Theorem 2.8) if I is a primal ideal of a Noetherian
ring R, then diam(Γ(R/I)) ≤ 2. In Theorems 2.16 and 2.18 (resp. Theo-
rems 4.7 and 4.8), it is shown that, if S is a multiplicatively closed subset of
R which consists of regular elements of R and I is a P -primal (resp. P -weakly
primal) ideal of R with P ∩ S = ∅, then diam(ΓI(R)) = diam(ΓS−1I(S

−1R))
and gr(ΓI(R)) = gr(ΓS−1I(S

−1R)).

In Section 3, it is proved that, if I =
√

I is not a primal ideal of R with
|Min(I)| ≥ 3, then diam(ΓI(R)) = 3 (Theorem 3.3). Also, it is shown that, if

I 6=
√

I is not a primal ideal of R, then diam(ΓI(R)) = 3 (Theorem 3.7).
In Section 4, we study the zero-divisor graph with respect to a weakly primal

ideal. We put ZI(R) = {r ∈ R − I : ra = 0 for some a ∈ R − I} where I is
an ideal of R. It is proved that (Theorem 4.3), if I is an ideal of a ring R
and P is a weakly prime ideal with w(I) ⊆ P and (P − I) ∩ ZI(R) = ∅,
then ΓI(R) = (P − I) ∪ ZI(R) if and only if I is a P -weakly primal ideal of
R. It is shown that (Theorem 4.4) if I is a weakly prime ideal of R, then
ΓI(R) = ZI(R). In particular, ΓI(R) is a subgraph of Γ(R).

2. Primal ideals

In this section, we will investigate the ideal-based zero-divisor graph with
respect to primal ideals. The class of primal ideals is a large class. For example
all primary ideals and irreducible ideals are primal. So the structure of zero-
divisor graphs with respect to primal ideals is worthy of study. Our starting
point is the following lemma:

Lemma 2.1. Let I be a proper ideal of a ring R. Then the following hold:

(i) I ⊆ S(I).
(ii) ΓI(R) = S(I) − I. In particular, ΓI(R) ∪ I = S(I).
(iii) If I is a radical ideal of R, then S(I) =

⋃
P∈Min(I) P .

Proof. (i) Let x ∈ I. As x.1R ∈ I with 1R /∈ I, we must have x is not prime to
I; hence I ⊆ S(I).

(ii) Let r ∈ ΓI(R). Then r /∈ I and rx ∈ I for some x /∈ I, so r is not prime
to I; hence r ∈ S(I) − I. Thus ΓI(R) ⊆ S(I) − I. For the other containment,
assume that a ∈ S(I) − I. As a is not prime to I, there exists y /∈ I such that
ay ∈ I. Then a ∈ ΓI(R), so we have equality.

(iii) Let x ∈ S(I). Thus we may assume that x /∈ I, so x ∈ ΓI(R). Then
xy ∈ I for some y ∈ R − I, so (0 :R/I x + I) 6= 0; hence x + I ∈ P/I for some
minimal prime ideal P/I of R/I by [9, Corollary 2.3]. Therefore, P ∈ Min(I)
and x ∈ P gives S(I) ⊆ ⋃

P∈Min(I) P . Conversely, assume that x ∈ P for some
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minimal prime ideal P of I. If x ∈ I, then x ∈ S(I) by (i). So we can assume
that x /∈ I. By [9, Theorem 2.1], there exist y /∈ P and a positive integer n
such that yxn ∈ I but yxn−1 /∈ I. This implies that x ∈ ΓI(R), so we have
equality. �

Proposition 2.2. Let I and P be ideals of a ring R with I ⊆ P . Then I is a

P -primal ideal of R if and only if ΓI(R) = P − I.

Proof. If I is a P -primal ideal of R, then ΓI(R) = S(I) − I = P − I by
Lemma 2.1. Conversely, assume that ΓI(R) = P − I. It suffices to show that
P is exactly the set of elements of R that are not prime to I. First, suppose
that c ∈ P . Since every element of I is not prime to I, we can assume that
c ∈ P − I = ΓI(R). Then there exists z /∈ I such that cz ∈ I, so c is not prime
to I. Next suppose that s is not prime to I. If s ∈ I, then s ∈ P . If s /∈ I,
then there is an element t /∈ I such that st ∈ I, so s ∈ ΓI(R) = P − I ⊆ P .
Thus I is a P -primal ideal of R. �

Theorem 2.3. Let I be an ideal of a ring R. Then I is a primal ideal of R if

and only if ΓI(R) ∪ I is an (prime) ideal of R.

Proof. This follows from Proposition 2.2. �

Examples 2.4. (1) Let R = Z16, I = (4̄) and P = (2̄). It is easy to check
that I is a P -primal ideal of R. Then ΓI(R) = P − I = {2̄, 6̄, 1̄0, 1̄4} by
Proposition 2.2.

(2) Let R = Z, I = 9Z and P = 3Z. Then, I is a P -primary and hence a P -
primal ideal of R by [7, Lemma 19]. Hence ΓI(R) = 3Z−9Z by Proposition 2.2.

(3) Let R = Q[x, y] the ring of polynomials in x and y with rational numbers
for their coefficients. Then I = (x2, xy) is a primal ideal with adjoint ideal
P = (x, y) ([8]). Hence ΓI(R) = (x, y) − (x2, xy) by Proposition 2.2.

Let I, J be ideals of a ring R. It is natural to ask whether ΓI(R) = ΓJ(R)
implies I = J? In this case, we have the following theorem:

Theorem 2.5. Let I and J be P -primal ideals of a ring R. Then ΓI(R) =
ΓJ(R) if and only if I = J .

Proof. By Lemma 2.1, I ⊆ P and J ⊆ P . It then follows from Proposition 2.2
that ΓI(R) = ΓJ(R) if and only if P − I = P − J ; and this holds if and only if
I = J . �

Theorem 2.6. Let I be an ideal of a ring R. Then I is primary if and only if

ΓI(R) =
√

I − I.

Proof. If I is primary, then I is a
√

I-primal ideal of R by [7, Lemma 19], so

Proposition 2.2 gives ΓI(R) =
√

I − I. Conversely, suppose that a, b ∈ R are

such that ab ∈ I but a /∈ I and b /∈
√

I (so b /∈ I). Then b ∈ ΓI(R) =
√

I − I,
which is a contradiction. Thus I is primary. �
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Theorem 2.7. Let I be an ideal of a commutative ring R. Then:

(1) 0 is a primal ideal of R if and only Z(R) is an (prime) ideal of R.

(2) I is a primal ideal of R if and only if Z(R/I) is an ideal of R/I.

Proof. (1) It is easy to show that S(0) = Z(R). Now the result follows from
the definition.

(2) It follows from (1). �

Let I be an ideal of R. It is shown in [2, Theorem 2.3] and [13, Theorem 2.4]
that diam(Γ(R/I)) ≤ 3 and diam(ΓI(R)) ≤ 3, but for a primal ideal we have
the following results:

Theorem 2.8. Let R be a Noetherian ring. If I is a primal ideal of R, then

diam(Γ(R/I)) ≤ 2.

Proof. Let I be a P -primal ideal of R. Then Γ(R/I)∪{0+I} = P/I is a prime
ideal of R/I by Theorem 2.7 and by [14, Corollary 9.36], P/I =

⋃
Q̄∈Ass(R/I) Q̄;

hence P/I ∈ Ass(R/I). Therefore, P/I = (0 :R/I ā) for some ā ∈ Γ(R/I). It
follows that diam(Γ(R/I)) ≤ 2. �

Let R be a principal ideal domain and let p be an irreducible element
of R. Then Rpt is a primary ideal of R for every positive integer t. So
Nil(R/Rpt) = Z(R/Rpt). Therefore diam(Γ(R/Rpt)) ≤ 2 by [10, Lemma 2.3].
Using Theorem 2.8, we give another proof for this result.

Corollary 2.9. Let R be a principal ideal domain, and let p be an irreducible

element of R. Then for every positive integer t, diam(Γ(R/Rpt)) ≤ 2. In

particular, diam(Γ(Zpt)) ≤ 2 for every prime number p.

Proof. Since I = Rpt is primary, we must have I is a primal ideal of R by [7,
Lemma 19]. Now the assertion follows from Theorem 2.8. �

Example 2.10. Let R = Z and I = 18Z. Then I is not a primal ideal of R
since 2 and 3 are not prime to I, but 3 − 2 = 1 is prime to I. Consider the
elements 2 and 3 in R/I. As 2.3 6= 0 we have d(2, 3) 6= 1. If there is a vertex
a in Γ(R/I) such the 2 − a − 3 is a path, then a = 0 which is a contradiction.
Hence d(2, 3) 6= 2. Thus diam(Γ(R/I)) = 3. Therefore, the condition “I is a
primal ideal of R” is not superficial in the Theorem 2.8.

Let R be a Noetherian ring and assume that Q(R), the total quotient ring
of R, is local. In this case, Z(Q(R)) = ann(x) for some 0 6= x ∈ Q(R). This
implies that diam(Γ(Q(R)) ≤ 2. On the other hand, Γ(Q(R)) is isomorphic
to Γ(R) by [1, Theorem 2.2]. So diam(Γ(R)) ≤ 2. However this fact may be
proved as the following theorem.

Theorem 2.11. Assume that R is a Noetherian ring let Q(R), the total quo-

tient ring of R a local ring. Then diam(Γ(R)) ≤ 2.
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Proof. Assume that S is the set of non-zero-divisors of R/I and let M be the
unique maximal ideal of Q(R). Then there exists a prime ideal P of R such that
P ∩ S = ∅ and M = S−1P . First we show that P = Z(R). As P ∩ S = ∅, we
have S ⊆ R − P . For every a ∈ R − P , we have a/1 /∈ S−1P = M . Hence a/1
is a unit in Q(R). Thus a /∈ Z(R), that is R − P ⊆ S. Therefore P = Z(R).
So 0 is a P -primal ideal of R by Theorem 2.7. Now the result follows from
Theorem 2.8. �

Lemma 2.12. Let I be a radical ideal of a ring R. Then diam(Γ(R/I)) =
diam(ΓI(R)).

Proof. This follows immediately from [5, Lemma 2.1 and Proposition 2.2]. �

Corollary 2.13. Let I be a primal radical ideal of a Noetherian ring R. Then

diam(ΓI(R)) ≤ 2.

Proof. This follows from Theorem 2.8 and Lemma 2.12. �

We shall require the following proposition, and its proof is a modification
of those in [6, Lemma 2.11 and Proposition 2.14], but we give the details for
convenience.

Proposition 2.14. Assume that S is a multiplicatively closed subset of a ring

R and let I be a P -primal ideal of R with P ∩ S = ∅. Then the following hold:

(i) If a/s ∈ S−1I, then a ∈ I.
(ii) S−1I is a S−1P -primal ideal of S−1R.

Proof. (i) Suppose that a/s ∈ S−1I, but a /∈ I. Then there are elements a′ ∈ I
and t ∈ S such that a/s = a′/t, so uta = usa′ ∈ I for some u ∈ S. It follows
that ut is not prime to I; hence ut ∈ P ∩S which is a contradiction, as needed.

(ii) Clearly, S−1P is a prime ideal of S−1R. It is enough to show that
S−1P is exactly the set of elements of S−1R which are not prime to S−1I.
Let r/s ∈ S−1P . Then r is not prime to I, so there exists c ∈ R − I with
rc ∈ I. Since P ∩ S = ∅, we get sc /∈ I; hence (sc)/1 /∈ S−1I by (i). As
(r/s)(sc)/1 ∈ S−1I, we must have r/s is not prime to S−1I. Now assume that
r/s is not prime to S−1I. Then there exists d/t /∈ S−1I with (r/s)(d/t) ∈ S−1I;
hence rd ∈ I by (i). Since d /∈ I, it follows that r is not prime to I. Thus
r ∈ P , and hence r/s ∈ S−1P , as required. �

Proposition 2.15. Assume that S is a multiplicatively closed subset of a ring

R and let I be a P -primal ideal of R with P ∩ S = ∅. Then S−1(ΓI(R)) =
ΓS−1I(S

−1R).

Proof. By Proposition 2.2 and Proposition 2.14, we must have ΓS−1I(S
−1R) =

S−1P − S−1I. It suffices to show that S−1(P − I) = S−1P − S−1I. First,
suppose that a/s ∈ S−1P−S−1I. Then a/s /∈ S−1I (so a /∈ I) and (a/s)(b/t) =
ab/st ∈ S−1I for some b/t /∈ S−1I (so b /∈ I), so ab ∈ I by Proposition 2.14(i);
hence a is not prime to I. It follows that a/s ∈ S−1(P − I). Thus S−1P −
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S−1I ⊆ S−1(P − I). Next, assume that a/s ∈ S−1(P − I). Then a ∈ P − I
implies that ab ∈ I for some b /∈ I by Proposition 2.2, so by Proposition 2.14(i),
b/1 /∈ S−1I. Now (a/s)(b/1) = ab/s ∈ S−1I gives a/s is not prime to S−1I, so
a/s ∈ S−1P − S−1I; hence we have equality. �

Theorem 2.16. Assume that S is a multiplicatively closed subset of a ring R
which consists of regular elements of R and let I be a P -primal ideal of R with

P ∩ S = ∅. Then diam(ΓI(R)) = diam(ΓS−1I(S
−1R)).

Proof. Suppose that diam(ΓI(R)) = 1. For every distinct vertices a/s, b/t of
ΓS−1I(S

−1R)), Proposition 2.15 gives a and b are distinct elements of ΓI(R),
so ab ∈ I; hence (a/s)(b/t) ∈ S−1I. Thus diam(ΓS−1I(S

−1R)) = 1. If
diam(ΓS−1I(S

−1R)) = 1, then for every distinct vertices a, b of ΓI(R) = P − I,
we have the distinct vertices a/1, b/1 ∈ S−1(P − I) = ΓS−1I(S

−1R) by Propo-
sition 2.15 (since if a/1 = b/1, then ta = tb for some t ∈ S; this implies
that a = b which is a contradiction), so (a/1)(b/1) ∈ S−1I. It follows from
Proposition 2.14(i) that ab ∈ I. Thus diam(ΓI(R)) = 1.

Now assume that diam(ΓI(R)) = 2. Let a/s, b/t ∈ ΓS−1I(S
−1R)). If

(a/s)(b/t) /∈ S−1I, then ab /∈ I, so there exists c ∈ ΓI(R) such that ac ∈ I and
bc ∈ I, so c/1 ∈ ΓS−1I(S

−1R) by Proposition 2.15. As (a/s)(c/1) ∈ S−1I and
(c/1)(b/t) ∈ S−1I, we must have diam(ΓS−1I(S

−1R)) = 2. Conversely, assume
that diam(ΓS−1I(S

−1R)) = 2. Let a, b ∈ ΓI(R) with a 6= b. If ab /∈ I, then
ab/1 /∈ S−1I by Proposition 2.14(i), so there is an element c/s of ΓS−1I(S

−1R)
with (a/1)(c/s) ∈ S−1I and (c/s)(b/1) ∈ S−1I. In this case, by Proposi-
tion 2.15, we must have c ∈ ΓI(R). Moreover, Proposition 2.14(i) gives ac ∈ I
and cb ∈ I; hence diam(ΓI(R)) = 2. Since, in general, the diameter of every
zero-divisor graph with respect to an ideal is at most 3, we have proved the
result. �

Example 2.17. Let R = Z and I = 6Z. Then I is not a primal ideal of R.
Since 2 and 3 are not prime to I, but 3−2 = 1 is prime to I. since I = 2Z∩3Z,
ΓI(R) is a complete bipartite with the parts 2Z− 3Z and 3Z− 2Z by [11, The-
orem 3.1]. Thus diam(ΓI(R)) = 2. Set S = {3n : n is a non-negative integer}.
Then S is a multiplicatively closed subset of R whose elements are regular and
S−1I is a prime ideal of S−1R; hence ΓS−1I(S

−1R) = ∅. This example shows
that the condition ”I is primal” in Theorem 2.16 is not superficial.

Theorem 2.18. Assume that S is a multiplicatively closed subset of a ring R
which consists of regular elements of R and let I be a P -primal ideal of R with

P ∩ S = ∅. Then gr(ΓI(R)) = gr(ΓS−1I(S
−1R)).

Proof. First assume that gr(ΓI(R)) = ∞. If gr(ΓS−1I(S
−1R)) = n, then there

is a cycle a1/s1 − a2/s2 − · · · − an/sn in ΓS−1I(S
−1R). In this case a1 − a2 −

· · ·− an forms a cycle in ΓI(R) by Proposition 2.14(i) which is a contradiction.
So gr(ΓS−1I(S

−1R)) = ∞. If gr(ΓS−1I(S
−1R)) = ∞, then since ΓI(R) is a

subgraph of ΓS−1I(S
−1R), we must have gr(ΓI(R)) = ∞. By [13, Lemma 5.1],
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the girth of every ideal-based zero-divisor graph of a commutative ring, when
finite, is either 3 or 4. Assume that gr(ΓS−1I(S

−1R)) = 3. So there exist
distinct vertices a/s, b/t, c/u in ΓS−1I(S

−1R) such that (a/s)(b/t), (b/t)(c/u)
and (c/u)(a/s) are elements of S−1I, so Proposition 2.15 gives a, b, c are distinct
vertices of ΓI(R); hence ab, bc, ca ∈ I by Proposition 2.14(i). It follows that
gr(ΓI(R)) = 3. Conversely, assume that gr(ΓI(R)) = 3. Since the canonical
homomorphism R → S−1R is injective, we can assume that R is a subring
of S−1R, so in this case, ΓI(R) is a subgraph of ΓS−1I(S

−1R) (for if a ∈
ΓI(R), then a/1 ∈ S−1(ΓI(R)) = ΓS−1I(S

−1R)) by Proposition 2.15); hence
gr(ΓS−1I(S

−1R)) ≤ gr(ΓI(R)) = 3. Since the girth of a graph is at least 3, we
must have gr(ΓS−1I(S

−1R)) = 3. Now it is clear that gr(ΓS−1I(S
−1R)) = 4 if

and only if gr(ΓI(R)) = 4. �

3. Non-primal ideals

In this section we study the diameter of ΓI(R) where I is not a primal ideal.
First, we will give the following definition.

Definition. Let I be an ideal of a ring R. An ideal J of R is called prime to
I if (I :R J) = I.

Proposition 3.1. Let I be an ideal of a ring R. If there are nonadjacent

elements a, b ∈ ΓI(R) such that the ideal 〈a, b〉 is prime to I, then diam(ΓI(R))
= 3.

Proof. Since a and b are nonadjacent, we must have d(a, b) 6= 1. If d(a, b) = 2,
then there is an element c ∈ R− I such that ac, cb ∈ I, so c ∈ (I : 〈a, b〉) which
is a contradiction. Thus d(a, b) 6= 2, as required. �

Proposition 3.2. Let I be an ideal of a ring R. If I is not primal, there exist

elements a and b of ΓI(R) such that the ideal 〈a, b〉 is prime to I.

Proof. Suppose that I is not primal. Then by Lemma 2.1, ΓI(R) ∪ I = S(I)
is not an ideal of R, so there exist a, b ∈ S(I) with a − b /∈ S(I). If a, b ∈ I,
then a− b ∈ I ⊆ S(I) by Lemma 2.1 which is a contradiction. So suppose that
a ∈ I but b /∈ I. Then b ∈ ΓI(R) and bc ∈ I for some c ∈ R− I, so (a− b)c ∈ I;
hence a − b is not prime I which is a contradiction. Similarly, for a /∈ I and
b ∈ I, we get a contradiction. Thus, we must have a, b ∈ R− I, so a, b ∈ ΓI(R).
It suffices to show that (I : 〈a, b〉) ⊆ I. If r ∈ (I : 〈a, b〉), then r(a − b) ∈ I, so
r ∈ I since a − b is prime to I. Thus 〈a, b〉 is prime to I. �

Theorem 3.3. Let I be a radical ideal of a ring R and suppose that I is not

a primal ideal of R and |Min(I)| ≥ 3. Then diam(ΓI(R)) = 3.

Proof. By Proposition 3.2, there exist a, b ∈ ΓI(R) such that the ideal 〈a, b〉 is
prime to I, so the ideal 〈a + I, b + I〉 of R/I has no non-zero annihilator. As
R/I is a reduced ring and |Min(R/I)| ≥ 3, it follows from ([10, Theorem 2.1])
that diam(Γ(R/I)) = 3. Now the assertion follows from Lemma 2.12. �
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Theorem 3.4. Assume that I is a radical ideal of a ring R and I is not a

primal ideal of R. Then diam(ΓI(R)) ≤ 2 if and only if |Min(I)| = 2.

Proof. First, assume that diam(ΓI(R)) ≤ 2. By assumption, S(I) is not an
ideal of R, so there exist a, b ∈ S(I) such that a + b /∈ S(I). If there is an
element r of (I : 〈a, b〉) with r /∈ I, then a + b ∈ ΓI(R) ⊆ S(I) which is a
contradiction, so we must have 〈a, b〉 is prime to I. Therefore, I is a radical
ideal gives I has at least two minimal prime ideals by Lemma 2.1(iii). If I has
more than two minimal primes, then diam(ΓI(R)) = 3 by Theorem 3.3; hence I
must have exactly two minimal prime ideals. Next, assume that |Min(I)| = 2.
If P1 and P2 are the only minimal prime ideals of I, then S(I) = P1 ∪ P2 by
Lemma 2.1(iii) and we may assume a ∈ P1 − P2 and b ∈ P2 − P1. Clearly,
ab ∈ P1 ∩ P2 = I. Consider two distinct vertices x and y in ΓI(R). If xy ∈ I,
then d(x, y) = 1. On the other hand, if xy /∈ I, then either 〈x, y〉 ⊆ P1 or
〈x, y〉 ⊆ P2 since S(I) = P1 ∪ P2. If 〈x, y〉 ⊆ P1, then x − b − y is a path in
ΓI(R); hence d(x, y) = 2. A similar argument shows that if 〈x, y〉 ⊆ P2, then
d(x, y) = 2. It follows that diam(ΓI(R)) ≤ 2. �

Lemma 3.5. Let I be an ideal of a ring R which is not a radical ideal, and let

J be an ideal of R which is not prime to I. If z ∈
√

I, then the ideal Rz + J
is not prime to I.

Proof. By hypothesis, S = R/I is a non-reduced ring and

(0 :R/I (I + J)/I) 6= 0.

If z ∈
√

I, then z+I is a nilpotent element of S. It follows from [10, Lemma 2.3]
that there exists a non-zero element r + I in the annihilator of the ideal S(z +
I) + (I + J)/I of S; hence r ∈ (I :R Rz + J) − I, as required. �

Proposition 3.6. Assume that I is not a radical ideal of a ring R. If z ∈
√

I
and a ∈ ΓI(R), then a + z ∈ ΓI(R) and the ideal 〈a, z〉 is not prime to I.

Proof. This follows from Lemma 3.5. �

Theorem 3.7. Let I be an ideal of a ring R which is not a radical ideal and

suppose that I is not a primal ideal of R. Then diam(ΓI(R)) = 3.

Proof. By Proposition 3.2, there are elements a, b ∈ ΓI(R) such that the ideal
〈a, b〉 is prime to I, so d(a, b) 6= 2. By Proposition 3.6, neither a nor b can be

elements of
√

I. If ab /∈ I, then d(a, b) 6= 1, so d(a, b) = 3; hence diam(ΓI(R)) =
3. So we can assume that ab ∈ I. Then

(I : 〈a2, b2〉) = (I : 〈a2, ab, b2〉) = (I : 〈a, b〉2) = (I : 〈a, b〉) = I.

Therefore, there is an element z ∈
√

I such that z /∈ (I : 〈a2, b2〉). Without loss
of generality we may assume that zb2 /∈ I. By assumption and Proposition 3.6,
we must have a + bz ∈ ΓI(R). Since (I : 〈a + bz, b〉) = (I : 〈a, b〉) = I, we
get d(a + bz, b) 6= 2. But (a + bz)b = ab + b2z /∈ I, so d(a + bz, b) 6= 1. Thus
d(a + bz, b) = 3 and diam(ΓI(R)) = 3. �
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4. Weakly primal ideals

In this section we study the ideal-based zero-divisor graph with respect to
weakly prime and weakly primal ideals.

Theorem 4.1. Let R be a finite local ring with unique maximal ideal M . Then

Γ(R) is a complete graph if and only if every proper ideal of R is weakly prime.

Proof. Assume that Γ(R) is a complete graph. Then Γ(R) = M −{0}. It then
follows from [2, Theorem 2.8] that xy = 0 for all x, y ∈ Γ(R), so M2 = 0; hence
the result follows from [3, Theorem 8]. Conversely, assume that every proper
ideal of R is weakly prime. Then by [3, Theorem 8], we must have M2 = 0.
Now the assertion follows from [2, Theorem 2.8]. �

Let I be an ideal of a ring R. Set

ZI(R) = {r ∈ R − I : ra = 0 for some a ∈ R − I}.
Lemma 4.2. Let I be a P -weakly primal ideal of a ring R. Then ΓI(R) =
(P − I) ∪ ZI(R).

Proof. Assume that I is a P -weakly primal ideal of R and let r ∈ ΓI(R). Then
there is an element a ∈ R−I with ra ∈ I. If ra 6= 0, then r is not weakly prime
to I, and so r ∈ P − I. If ra = 0, then r ∈ ZI(R). So ΓI(R) ⊆ (P − I)∪ZI(R).
For the reverse containment, assume that s ∈ (P−I)∪ZI(R). If s ∈ P−I, then
s is not weakly prime to I, so 0 6= sb ∈ I for some b ∈ R− I; hence s ∈ ΓI(R).
If s ∈ ZI(R), then there is an element c ∈ R − I such that sc = 0 ∈ I; hence
s ∈ ΓI(R), so we have equality. �

Theorem 4.3. Let I be a an ideal of a ring R and let P be a weakly prime ideal

of R with w(I) ⊆ P and (P − I) ∩ZI(R) = ∅. Then ΓI(R) = (P − I) ∪ ZI(R)
if and only if I is a P -weakly primal ideal of R.

Proof. By Lemma 4.2, it suffices to show that if ΓI(R) = (P − I) ∪ ZI(R),
then I is a P -weakly primal ideal of R. We show that P −{0} consists exactly
of elements of R that are not weakly prime to I. If r ∈ R is not weakly
prime to I, then r ∈ w(I) ⊆ P . Next, assume that s ∈ P − {0}. Since every
non-zero element of I is not weakly prime to I, we can assume that s /∈ I.
Therefore, s ∈ P − I ⊆ ΓI(R) implies that sb ∈ I for some b ∈ R − I. Since
(P − I) ∩ ZI(R) = ∅, we must have sb 6= 0; hence s is not weakly prime to I.
Thus I is a P -weakly primal ideal of R. �

Set R = Z/24Z, I = 8Z/24Z and P = 2Z/24Z. Then I is a P -primal ideal of
R. Hence, by Proposition 2.2, ΓI(R) = P −I = {2, 4, 6, 10, 12, 14, 18, 20, 22}. It
is easy to check that ΓI(R) = ZI(R). While I is not a weakly prime ideal of R
because 0 6= 2.4 ∈ I with 2, 4 /∈ I. This example shows that if ΓI(R) = ZI(R),
I need not necessarily be weakly prime. But the converse holds:

Theorem 4.4. Let I be a weakly prime ideal of a commutative ring R. Then

ΓI(R) = ZI(R). In particular, ΓI(R) is a subgraph of Γ(R).
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Proof. Suppose that I is a weakly prime ideal of R. Then I is I-weakly primal
by [7, Theorem 3], so Lemma 4.2 gives ΓI(R) = ZI(R). �

The proof of the following corollary can be found in [7, Proposition 18], but
our proof here will be different.

Corollary 4.5. Let I be an ideal of an integral domain R. Then I is primal

if and only if it is weakly primal.

Proof. Clearly, ZI(R) = ∅. Now the assertion follows from Proposition 2.2 and
Theorem 4.3. �

Proposition 4.6. Assume that S is a multiplicatively closed subset of a ring R
and let I be a P -weakly primal ideal of R with P ∩S = ∅. Then S−1(ΓI(R)) =
ΓS−1I(S

−1R).

Proof. By [7, Proposition 9], S−1I is a S−1P -weakly primal ideal of S−1R.
Then Lemma 4.2 gives

ΓS−1I(S
−1R) = (S−1P − S−1I) ∪ (ZS−1I(S

−1R)).

It is enough to show that

S−1[(P − I) ∪ ZI(R)] = (S−1P − S−1I) ∪ (ZS−1I(S
−1R)).

First, assume that a/s ∈ (S−1P − S−1I) ∪ (ZS−1I(S
−1(R). If

a/s ∈ ZS−1I(S
−1R),

then (a/s)(b/t) = ab/st = 0 ∈ S−1I for some b/t ∈ S−1(R)−S−1I, so b /∈ I and
ab = 0 ∈ I; hence a ∈ (P − I)∪ZI(R). Therefore, a/s ∈ S−1[(P − I)∪ZI(R)].
If a/s ∈ (S−1P − S−1I), then a/s /∈ S−1I (so a /∈ I) and (a/s)(b/t) = ab/st ∈
S−1I for some b/t /∈ S−1I (so b /∈ I). If ab/st = 0, then ab = 0 ∈ I. If
ab/st 6= 0, then ab ∈ I by [7, Lemma 8]. It follows that a ∈ (P − I) ∪ ZI(R).
Thus (S−1P − S−1I) ∪ (ZS−1I(S

−1R) ⊆ S−1[(P − I) ∪ZI(R)]. Next, suppose
that a/s ∈ S−1[(P − I) ∪ ZI(R)]. Then ab ∈ I for some b /∈ I. By [7,
Lemma 8], b/1 /∈ S−1I. Clearly, (a/s)(b/1) = ab/s ∈ S−1I. If (a/s)(b/1) = 0,
then a/s ∈ ZS−1I(S

−1R)). If (a/s)(b/1) /∈ 0, then a/s is not weakly prime to
S−1I, so a/s ∈ S−1P − S−1I; hence S−1[(P − I)∪ZI(R)] ⊆ (S−1P −S−1I)∪
(ZS−1I(S

−1R)), so the proof is complete. �

Theorem 4.7. Assume that S is a multiplicatively closed subset of a ring R
which consists of regular elements of R and let I be a P -weakly primal ideal of

R with P ∩ S = ∅. Then diam(ΓI(R)) = diam(ΓS−1I(S
−1R)).

Proof. Suppose that diam(ΓI(R)) = 1. For every distinct vertices a/s, b/t of
ΓS−1I(S

−1R)), Proposition 4.6 gives a and b are distinct elements of ΓI(R),
so ab ∈ I; hence (a/s)(b/t) ∈ S−1I. Thus diam(ΓS−1I(S

−1R)) = 1. If
diam(ΓS−1I(S

−1R)) = 1, then for every distinct vertices a, b of ΓI(R) =
(P −I)∪ZI(R), we must have a/1, b/1 ∈ S−1((P −I)∪ZI(R)) = ΓS−1I(S

−1R)
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by Proposition 4.6, so (a/1)(b/1) ∈ S−1I. If ab = 0, then ab ∈ I. If ab 6= 0,
then [7, Lemma 8] gives ab ∈ I. Thus diam(ΓI(R)) = 1.

The proof of the cases when diameters are 2 and 3 is similar to that in case
diam(ΓI(R)) = 1 and Theorem 2.16, and we omit it. �

Theorem 4.8. Assume that S is a multiplicatively closed subset of a ring R
which consists of regular elements of R and let I be a P -weakly primal ideal of

R with P ∩ S = ∅. Then gr(ΓI(R)) = gr(ΓS−1I(S
−1R)).

Proof. By [13, Theorem 5.5], the girth of every ideal-based zero-divisor graph
of a commutative ring, when finite, is either 3 or 4. By using Proposition 4.6
and [7, Lemma 8] the proof is similar to that in the Theorem 2.18 and we omit
it. �

Theorem 4.9. Assume that S is a multiplicatively closed subset of a ring R
which consists of regular elements of R and let P be a weakly prime ideal of R
with P ∩ S = ∅. Then the following hold:

(i) diam(ΓP (R)) = diam(ΓS−1P (S−1R)).
(ii) gr(ΓP (R)) = gr(ΓS−1P (S−1R)).

Proof. By [7, Theorem 3], every weakly prime ideal of R is weakly primal. Also,
S−1P is weakly prime ideal of S−1R by [3, Proposition 13]. Now the assertion
follows from Theorem 4.7 and Theorem 4.8. �

Let Q(R) be the total quotient ring of R. It is proved in [1, Theorem 2.2]
(see also [12, Theorem 1.1]) that the graphs Γ(R) and Γ(Q(R)) are isomorphic.
So these two graphs have the same diameters and same girths. This theorem is
basic and several important results follows from it. Now consider the following
remark:

Remark 4.10. Suppose that Q(R) = T−1R is the total quotient ring of R. We
know that 0 always is a weakly prime ideal of R (by definition). Therefore, by
Theorem 4.9, diam(Γ(R)) = diam(Γ0(R)) = diam(Γ(Q(R)). Thus Theorem 4.9
is a generalization of [12, Theorem 1.1].

Acknowledgments. The authors thank the referee for his/her excellent sug-
gestions to an earlier version of the paper, which improved the paper.
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