• Title/Summary/Keyword: Prey species

Search Result 217, Processing Time 0.02 seconds

Feeding by the newly described heterotrophic dinoflagellate Aduncodinium glandula: having the most diverse prey species in the family Pfiesteriaceae

  • Jang, Se Hyeon;Jeong, Hae Jin;Lim, An Suk;Kwon, Ji Eun;Kang, Nam Seon
    • ALGAE
    • /
    • v.31 no.1
    • /
    • pp.17-31
    • /
    • 2016
  • To explore the feeding ecology of the newly described heterotrophic dinoflagellate Aduncodinium glandula in the family Pfiesteriaceae, its feeding behavior and prey species were investigated. Additionally, the growth and ingestion rates of A. glandula on the mixotrophic dinoflagellates Heterocapsa triquetra and Akashiwo sanguinea, its optimal and suboptimal prey, respectively were measured. A. glandula fed on prey through a peduncle after anchoring to the prey using a tow filament. A. glandula ate all algal prey and perch blood cells tested and had the most diverse prey species in the family Pfiesteriaceae. Unlike for other pfiesteriacean species, H. triquetra and A. sanguinea support the positive growth of A. glandula. However, the cryptophytes Rhodomonas salina and Teleaulax sp. and the phototrophic dinoflagellate Amphidinium carterae did not support the positive growth of A. glandula. Thus, A. glandula may have a unique kind of prey and its optimal prey differs from that of the other pfiesteriacean dinoflagellates. With increasing mean prey concentration, the growth rates of A. glandula on H. triquetra and A. sanguinea increased rapidly and then slowed or became saturated. The maximum growth rates when feeding on H. triquetra and A. sanguinea were 1.004 and 0.567 d−1, respectively. Further, the maximum ingestion rates of A. glandula on H. triquetra and A. sanguinea were 0.75 and 1.38 ng C predator−1 d−1, respectively. There is no other pfiesteriacean species having H. triquetra and A. sanguinea as optimal and suboptimal prey. Thus, A. glandula may be abundant during blooms dominated by these species not preferred by the other pfiesteriacean dinoflagellates.

Obligate mixotrophy of the pigmented dinoflagellate Polykrikos lebourae (Dinophyceae, Dinoflagellata)

  • Kim, Sunju;Yoon, Jihae;Park, Myung Gil
    • ALGAE
    • /
    • v.30 no.1
    • /
    • pp.35-47
    • /
    • 2015
  • The marine sand-dwelling dinoflagellate Polykrikos lebourae possesses obvious gold-brown pigmented plastids as well as taeniocyst-nematocyst complex structures. Despite of the presence of the visible plastids, previous attempts to establish this species in culture all failed and thus the unavailability of cultures of this species has posed a major obstacle to further detailed exploration of ecophysiology of the dinoflagellate. Here, we isolated P. lebourae from sandy sediment of an intertidal flat on Korean western coast, successfully established it in culture, and have been maintaining the stock culture over the past 3 years. Using this stock culture, we explored phagotrophy and potential prey resources of P. lebourae, growth and grazing responses of P. lebourae to different prey organisms, the effect of prey concentration on growth and grazing rates and gross growth efficiency (GGE) of P. lebourae when fed three different prey organisms, and the growth kinetics of P. lebourae under different light regimes. P. lebourae captured prey cells using a tow filament and then phagocytized them through the posterior end. The dinoflagellate was capable of ingesting a broad range of prey species varying in size, but not all prey species tested in this study supported its sustained growth. GGE of P. lebourae was extremely high at low prey concentration and moderate or low at high prey concentrations, indicating that P. lebourae grows heterotrophically at high prey concentrations but its growth seems to be more dependent on a certain growth factor or photosynthesis of plastids derived from the prey. In the presence of prey in excess, P. lebourae grew well at moderate light intensity of $40{\mu}mol$ photons $m^{-2}s^{-1}$, but did not grow at dim and high (10 or $120{\mu}mol$ photons $m^{-2}s^{-1}$) light intensities. Our results suggest that the benthic dinoflagellate P. lebourae is an obligate mixotroph, requiring both prey and light for sustained growth and survival.

Population Variation of Spanish Mackerel (Scomberomorus niphonius) according to Its Major Prey Abundance in Southern and Eastern Coastal Waters of Korea (한국 남해와 동해 연안역 주요 먹이 어종의 풍도변화에 따른 삼치 개체군의 변동)

  • Kim, Jin Yeong;Kim, Youngsoon;Kim, Heeyong
    • Journal of Environmental Science International
    • /
    • v.30 no.10
    • /
    • pp.811-820
    • /
    • 2021
  • The population variation of Spanish mackerel (Scomberomorus niphonius) according to its major prey abundance was analyzed using monthly catches of coastal set net fisheries in the southern waters off Gyeongsangnam-do and eastern waters off Gyeongsangbuk-do of Korea from 2006 to 2019. The abundance of Spanish mackerel and its prey species fluctuated almost simultaneously with time lags of +2 to -2 months between the set net fisheries in the southern and eastern waters. The generalized additive model revealed that the abundance of Spanish mackerel was influenced by its prey species such as hairtail and anchovy in southern waters, and common mackerel and horse mackerel in eastern waters. The model deviance explained 49% and 42% of Spanish mackerel abundance in southern and eastern waters respectively. These results suggest that the abundance of Spanish mackerel is affected by seasonal migratory prey fish species in the coastal areas and can be linked to their northerly migration.

Feeding habits of white croaker, Pennahia argentata in the coastal waters off Sejon island, Korea (한국 남해안 세존도 주변 해역에 출현하는 보구치 (Pennahia argentata)의 식성)

  • Koh, Eun-Hye;An, Young-Su;Baeck, Gun-Wook;Jang, Choong-Sik
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.50 no.2
    • /
    • pp.139-146
    • /
    • 2014
  • Feeding habits of white croacker, Pennahia argentata, were analyzed by using the stomach contents of 153 specimens caught by bottom trawl from May 2011 to March 2012 in the Sejon island, Korea. To know feeding habits of the white croacker, P. argentata, a species composition and it's fluctuation were analyzed based on growth. White croacker, P. argentata caught in the area composes 15 species. The most species in an number of the prey was Macrura which was occupied at 66.4% from whole prey, the second most species was Pisces which was occupied at 20.3%. The most species in an wet-weight of the prey was Pisces which was 49.3% out of the whole specimens. The second most species was Macrura which was 43.3%. The frequency occurrence of the prey was Macrura which was 68.6%, the next one was Pisces which was 28.8%. The highest Index of Relative Importance (IRI) of the prey was Macrura which was 78.2%, the next one was Pisces which was 28.8%. A number of the prey per specimen of small, middle and large class were 1.3, 1.5, 1.7, respectively. A wet weight of the prey per specimen of small, middle and large class were 0.2, 0.6, 0.2 g, respectively.

Five phototrophic Scrippsiella species lacking mixotrophic ability and the extended prey spectrum of Scrippsiella acuminata (Thoracosphaerales, Dinophyceae)

  • Ji Hyun You;Jin Hee Ok;Hee Chang Kang;Sang Ah Park;Se Hee Eom;Hae Jin Jeong
    • ALGAE
    • /
    • v.38 no.2
    • /
    • pp.111-126
    • /
    • 2023
  • Mixotrophic dinoflagellates act as primary producers, prey, and predators in marine planktonic food webs, whereas exclusively autotrophic dinoflagellates are primary producers and prey. Species of the dinoflagellate genus Scrippsiella are commonly found in marine ecosystems and sometimes cause harmful red tides. Among the 28 formally described Scrippsiella species, S. acuminata has been found to be mixotrophic and two unidentified species have been found to be mixotrophic. To determine whether the other species in this genus are similarly mixotrophic, the mixotrophic ability of S. donghaiensis SDGJ1703, S. lachrymosa SLBS1703, S. masanensis SSMS0908, S. plana SSSH1009A, and S. ramonii VGO1053 was explored using 15 potential prey items, including 2-㎛ fluorescently labeled microspheres (FLM) and heterotrophic bacteria (FLB), the cyanobacterium Synechococcus sp., and various microalgal prey species. The ability of S. acuminata to feed on FLM and FLB was also investigated. We found that S. donghaiensis, S. lachrymosa, S. masanensis, S. plana, and S. ramonii did not feed on any potential prey tested in this study, indicating a lack of mixotrophy. However, S. acuminata fed on both FLM and FLB, confirming its mixotrophic ability. These results lowered the proportion of mixotrophic species relative to the total number of tested Scrippsiella species for mixotrophy from 100% to 29-38%. Owing to its mixotrophic ability, S. acuminata occupies an ecological niche that is distinct from that of S. donghaiensis, S. lachrymosa, S. masanensis, S. plana, and S. ramonii.

PERMANENCE FOR THREE SPECIES PREDATOR-PREY SYSTEM WITH DELAYED STAGE-STRUCTURE AND IMPULSIVE PERTURBATIONS ON PREDATORS

  • Zhang, Shuwen;Tan, Dejun
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1097-1107
    • /
    • 2009
  • In this paper, three species stage-structured predator-prey model with time delayed and periodic constant impulsive perturbations of predator at fixed times is proposed and investigated. We show that the conditions for the global attractivity of prey(pest)-extinction periodic solution and permanence of the system. Our model exhibits a new modelling method which is applied to investigate impulsive delay differential equations. Our results give some reasonable suggestions for pest management.

  • PDF

Lack of mixotrophy in three Karenia species and the prey spectrum of Karenia mikimotoi (Gymnodiniales, Dinophyceae)

  • Jin Hee Ok;Hae Jin Jeong;An Suk Lim;Hee Chang Kang;Ji Hyun You;Sang Ah Park;Se Hee Eom
    • ALGAE
    • /
    • v.38 no.1
    • /
    • pp.39-55
    • /
    • 2023
  • Exploring mixotrophy of dinoflagellate species is critical to understanding red-tide dynamics and dinoflagellate evolution. Some species in the dinoflagellate genus Karenia have caused harmful algal blooms. Among 10 Karenia species, the mixotrophic ability of only two species, Karenia mikimotoi and Karenia brevis, has been investigated. These species have been revealed to be mixotrophic; however, the mixotrophy of the other species should be explored. Moreover, although K. mikimotoi was previously known to be mixotrophic, only a few potential prey species have been tested. We explored the mixotrophic ability of Karenia bicuneiformis, Karenia papilionacea, and Karenia selliformis and the prey spectrum of K. mikimotoi by incubating them with 16 potential prey species, including a cyanobacterium, diatom, prymnesiophyte, prasinophyte, raphidophyte, cryptophytes, and dinoflagellates. Cells of K. bicuneiformis, K. papilionacea, and K. selliformis did not feed on any tested potential prey species, indicating a lack of mixotrophy. The present study newly discovered that K. mikimotoi was able to feed on the common cryptophyte Teleaulax amphioxeia. The phylogenetic tree based on the large subunit ribosomal DNA showed that the mixotrophic species K. mikimotoi and K. brevis belonged to the same clade, but K. bicuneiformis, K. papilionacea, and K. selliformis were divided into different clades. Therefore, the presence or lack of a mixotrophic ability in this genus may be partially related to genetic characterizations. The results of this study suggest that Karenia species are not all mixotrophic, varying from the results of previous studies.

Dietary composition of two coexisting bat species, Myotis ikonnikovi and Plecotus ognevi, in the Mt. Jumbong forests, South Korea

  • Sungbae Joo;Injung An;Sun-Sook Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.168-176
    • /
    • 2023
  • Background: Many insectivorous bats have flexible diets, and the difference in prey item consumption among species is one of the key mechanisms that allows for the avoidance of interspecies competition and promotes coexistence within a microhabitat. In Korea, of the 24 bat species that are known to be distributed, eight insectivorous bats use forest areas as both roosting and foraging sites. Here, we aimed to understand the resource partitioning and coexistence strategies between two bat species, Myotis ikonnikovi and Plecotus ognevi, cohabiting the Mt. Jumbong forests, by comparing the differences in dietary consumption based on habitat utilization. Results: Upon examining their dietary composition using the DNA meta-barcoding approach, we identified 403 prey items (amplicon sequence variants). A greater prey diversity including Lepidoptera, Diptera, Coleoptera, and Ephemeroptera, was detected from M. ikonnikovi, whereas most prey items identified from P. ognevi belonged to Lepidoptera. The diversity index of prey items was higher for M. ikonnikovi (H': 5.67, D: 0.995) than that for P. ognevi (H': 4.31, D: 0.985). Pianka's index value was 0.207, indicating little overlap in the dietary composition of these bat species. Our results suggest that M. ikonnikovi has a wider diet composition than P. ognevi. Conclusions: Based on the dietary analysis results, our results suggests the possibility of differences in foraging site preferences or microhabitat utilization between two bat species cohabiting the Mt. Jumbong. In addition, these differences may represent one of the important mechanism in reducing interspecific competition and enabling coexistence between the two bat species. We expected that our results will be valuable for understanding resource partitioning and the coexistence of bats inhabiting the Korean forests.

DYNAMIC ANALYSIS OF A PERIODICALLY FORCED HOLLING-TYPE II TWO-PREY ONE-PREDATOR SYSTEM WITH IMPULSIVE CONTROL STRATEGIES

  • Kim, Hye-Kyung;Baek, Hun-Ki
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.14 no.4
    • /
    • pp.225-247
    • /
    • 2010
  • In this paper, we establish a two-competitive-prey and one-predator Holling type II system by introducing a proportional periodic impulsive harvesting for all species and a constant periodic releasing, or immigrating, for the predator at different fixed time. We show the boundedness of the system and find conditions for the local and global stabilities of two-prey-free periodic solutions by using Floquet theory for the impulsive differential equation, small amplitude perturbation skills and comparison techniques. Also, we prove that the system is permanent under some conditions and give sufficient conditions under which one of the two preys is extinct and the remaining two species are permanent. In addition, we take account of the system with seasonality as a periodic forcing term in the intrinsic growth rate of prey population and then find conditions for the stability of the two-prey-free periodic solutions and for the permanence of this system. We discuss the complex dynamical aspects of these systems via bifurcation diagrams.

Fatty acid composition and docosahexaenoic acid (DHA) content of the heterotrophic dinoflagellate Oxyrrhis marina fed on dried yeast: compared with algal prey

  • Yoon, Eun Young;Park, Jaeyeon;Jeong, Hae Jin;Rho, Jung-Rae
    • ALGAE
    • /
    • v.32 no.1
    • /
    • pp.67-74
    • /
    • 2017
  • The heterotrophic dinoflagellate Oxyrrhis marina is known to produce high levels of docosahexaenoic acid (DHA) when fed on diverse algal prey. However, large-scale culturing of algal prey species is not easy and requires a large amount of budget, and thus more easily cultivable and low-cost prey is required. Dried yeast was selected as a strong candidate for an alternative prey in our preliminary tests. Thus, we explored the fatty acid composition and DHA production of O. marina fed on dried yeast and compared these results to those of O. marina fed on two algal prey species: the phototrophic dinoflagellate Amphidinium carterae and chlorophyte Chlorella sp. powder. O. marina fed on dried yeast, which does not contain DHA, produced the same high level of DHA as those fed on DHA-containing A. carterae. This indicates that O. marina is likely to produce DHA by itself regardless of prey items. Furthermore, the DHA content (and portion of total fatty acid methyl esters) of O. marina satiated with dried yeast, 52.40 pg per cell(and 25.9%), was considerably greater than that of O. marina fed on A. carterae (26.91 pg per cell; 15.7%) or powder of Chlorella sp. powder (21.24 pg per cell; 16.7%). The cost of dried yeast (approximately 10 US dollars for 1 kg dried yeast) was much lower than that of obtaining the algal prey (approximately 160 US dollars for 1 kg A. carterae). Therefore, compared to conventional algal prey, dried yeast is a more easily obtainable and lower-cost prey for use in the production of DHA by O. marina.