Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.1.035

Obligate mixotrophy of the pigmented dinoflagellate Polykrikos lebourae (Dinophyceae, Dinoflagellata)  

Kim, Sunju (Research Institute for Basic Sciences, Chonnam National University)
Yoon, Jihae (Department of Oceanography, Chonnam National University)
Park, Myung Gil (Department of Oceanography, Chonnam National University)
Publication Information
ALGAE / v.30, no.1, 2015 , pp. 35-47 More about this Journal
Abstract
The marine sand-dwelling dinoflagellate Polykrikos lebourae possesses obvious gold-brown pigmented plastids as well as taeniocyst-nematocyst complex structures. Despite of the presence of the visible plastids, previous attempts to establish this species in culture all failed and thus the unavailability of cultures of this species has posed a major obstacle to further detailed exploration of ecophysiology of the dinoflagellate. Here, we isolated P. lebourae from sandy sediment of an intertidal flat on Korean western coast, successfully established it in culture, and have been maintaining the stock culture over the past 3 years. Using this stock culture, we explored phagotrophy and potential prey resources of P. lebourae, growth and grazing responses of P. lebourae to different prey organisms, the effect of prey concentration on growth and grazing rates and gross growth efficiency (GGE) of P. lebourae when fed three different prey organisms, and the growth kinetics of P. lebourae under different light regimes. P. lebourae captured prey cells using a tow filament and then phagocytized them through the posterior end. The dinoflagellate was capable of ingesting a broad range of prey species varying in size, but not all prey species tested in this study supported its sustained growth. GGE of P. lebourae was extremely high at low prey concentration and moderate or low at high prey concentrations, indicating that P. lebourae grows heterotrophically at high prey concentrations but its growth seems to be more dependent on a certain growth factor or photosynthesis of plastids derived from the prey. In the presence of prey in excess, P. lebourae grew well at moderate light intensity of $40{\mu}mol$ photons $m^{-2}s^{-1}$, but did not grow at dim and high (10 or $120{\mu}mol$ photons $m^{-2}s^{-1}$) light intensities. Our results suggest that the benthic dinoflagellate P. lebourae is an obligate mixotroph, requiring both prey and light for sustained growth and survival.
Keywords
benthic cryptophytes; gross growth efficiency; growth response; obligate mixotrophy; Polykrikos lebourae; sand-dwelling dinoflagellate;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Balech, E. 1956. E'tude des dinoflagelles du sable de Roscoff. Rev. Algol. 2:29-52.
2 Hoppenrath, M. & Leander. B. S. 2007b. Morphology and phylogeny of the pseudocolonial dinoflagellates Polykrikos lebourae and Polykrikos herdmanae n. sp. Protist 158:209-227.   DOI   ScienceOn
3 Hoppenrath, M., Yubuki, N., Bachvaroff, T. R. & Leander, B. S. 2010. Re-classification of Pheopolykrikos hartmannii as Polykrikos (Dinophyceae) based partly on the ultrastructure of complex extrusomes. Eur. J. Protistol. 46:29-37.   DOI
4 Jakobsen, H. H., Hansen, P. J. & Larsen, J. 2000. Growth and grazing responses of two chloroplast-retaining dinoflagellates: effect of irradiance and prey species. Mar. Ecol. Prog. Ser. 201:121-128.   DOI
5 Jonsson, P. R. 1986. Particle size selection, feeding rates and growth dynamics of marine planktonic oligotrichous ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 33:265-277.   DOI
6 Kim, M., Kim, S., Yih, W. & Park, M. G. 2012. The marine dinoflagellate genus Dinophysis can retain plastids of multiple algal origins at the same time. Harmful Algae 13:105-111.   DOI
7 Kim, S., Kang, Y. G., Kim, H. S., Yih, W., Coats, D. W. & Park, M. G. 2008. Growth and grazing responses of the mixotrophic dinoflagellate Dinophysis acuminata as functions of light intensity and prey concentration. Aquat. Microb. Ecol. 51:301-310.   DOI   ScienceOn
8 Matsuoka, K. & Fukuyo, Y. 1986. Cyst and motile morphology of a colonial dinoflagellate Pheopolykrikos hartmannii (Zimmermann) comb. nov. J. Plankton Res. 8:811-818.   DOI
9 Menden-Deuer, S. & Lessard, E. J. 2000. Carbon to volume relationships for dinoflagellaltes, diatoms, and other protist plankton. Limnol. Oceanogr. 45:569-579.   DOI
10 Borsheim, K. Y. & Bratbak, G. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from seawater. Mar. Ecol. Prog. Ser. 36:171-175.   DOI
11 Caron, D. A. & Goldman, J. C. 1990. Protozoan nutrient regeneration. In Capriul, G. M. (Ed.) Ecology of marine protozoa. Oxford University Press, NY, pp. 283-306.
12 Dragesco, J. 1965. Etude cytologique de quelques flagelles mesopsammiques. Cah. Biol. Mar. 6:83-115.
13 Fawcett, R. C. & Parrow, M. W. 2014. Mixotrophy and loss of phototrophy among geographic isolates of freshwater Esoptrodinium/Bernardinium sp. (Dinophyceae). J. Phycol. 50:55-70.   DOI
14 Gast, R. J., Moran, D. M., Dennett, M. R. & Caron, D. A. 2007. Kleptoplasty in an Antarctic dinoflagellate: caught in evolutionary transition? Environ. Microbiol. 9:39-45.   DOI
15 Guillard, R. R. L.1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chanley, M. H (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, NY, pp. 26-60.
16 Hansen, P. J. 2011. The role of photosynthesis and food uptake for the growth of marine mixotrophic dinoflagellates. J. Eukaryot. Microbiol. 58:203-214.   DOI   ScienceOn
17 Heinbokel, J. F. 1978. Studies on the functional role of tintinnids in the southern California Bight. I. Grazing and growth rates in laboratory cultures. Mar. Biol. 47:177-189.   DOI
18 Herdman, E. C. 1923 Notes on dinoflagellates and other organisms causing discolouration of the sand at Port Erin III. Proc. Trans. Liverpool Biol. Soc. 37:58-63.
19 Hoppenrath, M. & Leander, B. S. 2007a. Character evolution in polykrikoid dinoflagellates. J. Phycol. 43:366-377.   DOI   ScienceOn
20 Park, M. G., Kim, M. & Kang, M. 2013. A dinoflagellate Amylax triacantha with plastids of the cryptophyte origin: phylogeny, feeding mechanism, and growth and grazing responses. J. Eukaryot. Microbiol. 60:363-376.   DOI   ScienceOn
21 Park, M. G., Kim, S., Kim, H. S., Myung, G., Kang, Y. G. & Yih, W. 2006. First successful culture of the marine dinoflagellate Dinophysis acuminata. Aquat. Microb. Ecol. 45:101-106.   DOI   ScienceOn
22 Schnepf, E. & Elbrachter, M. 1999. Dinophyte chloroplasts and phylogeny: a review. Grana 38:81-97.   DOI
23 Schoener, D. M. & McManus, G. B. 2012. Plastid retention, use, and replacement in a kleptoplastidic ciliate. Aquat. Microb. Ecol. 67:177-187.   DOI
24 Sellers, C. G., Gast, R. J. & Sanders, R. W. 2014. Selective feeding and foreign plastid retention in an Antarctic dinoflagellate. J. Phycol. 50:1081-1088.   DOI
25 Skovgaard, A. 1998. Role of chloroplast retention in a marine dinoflagellate. Aquat. Microb. Ecol. 15:293-301.   DOI
26 Stoecker, D. K. 1999. Mixotrophy among dinoflagellates. J. Eukaryot. Microbiol. 46:397-401.   DOI
27 Stoecker, D. K. & Evans, G. T. 1985. Effects of protozoan herbivory and carnivory in a microplankton food web. Mar. Ecol. Prog. Ser. 25:159-167.   DOI
28 Tang, Y. Z., Harke, M. J. & Gobler, C. J. 2013. Morphology, phylogeny, dynamics, and ichthyotoxicity of Pheopolykrikos hartmannii (Dinophyceae) isolates and blooms from New York, USA. J. Phycol. 49:1084-1094.   DOI
29 Vadrucci, M. R., Cabrini, M. & Basset, A. 2007. Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean ecoregion. Transit. Waters Bull. 2:82-102.
30 Verity, P. 1985. Grazing, respiration, excretion, and growth rates of tintinnids. Limnol. Oceanogr. 30:1268-1282.   DOI
31 Yih, W., Kim, H. S., Jeong, H. J., Myung, G. & Kim, Y. G. 2004. Ingestion of cryptophyte cells by the marine photosynthetic ciliate Mesodinium rubrum. Aquat. Microb. Ecol. 36:165-170.   DOI   ScienceOn
32 Yoo, Y. D., Jeong, H. J., Kang, N. S., Song, J. Y., Kim, K. Y., Lee, G. & Kim, J. 2010. Feeding by the newly described mixotrophic dinoflagellate Paragymnodinium shiwhaense: feeding mechanism, prey species, and effect of prey concentration. J. Eukaryot. Microbiol. 57:145-158.   DOI   ScienceOn
33 Zimmermann, W. 1930. Neue und wenig bekannte Kleinalgen von Neapel. Z. Bot. 23:419-442.