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PERMANENCE FOR THREE SPECIES PREDATOR-PREY
SYSTEM WITH DELAYED STAGE-STRUCTURE AND
IMPULSIVE PERTURBATIONS ON PREDATORS

SHUWEN ZHANG * AND DEJUN TAN

ABSTRACT. In this paper, three species stage-structured predator-prey model
with time delayed and periodic constant impulsive perturbations of preda-
tor at fixed times is proposed and investigated. We show that the conditions
for the global attractivity of prey(pest)-extinction periodic solution and
permanence of the system. Our model exhibits a new modelling method
which is applied to investigate impulsive delay differential equations. Our
results give some reasonable suggestions for pest management.
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1. Introduction

Biological control is, generally, man’s use of a specially chosen living organism
to control a particular pest, which is a component of an integrated pest manage-
ment strategy. This chosen organism might be a predator, parasite, or disease
which will attack the harmful insect. It is a form of manipulating nature to
increase a desired effect. It may also be a more economical alternative to some
insecticides. Some biological control measures can actually prevent economic
damage to agricultural crops. Virtually all insect and mite pests have some
natural enemies. One approach to biological control is augmentation, which is
manipulation of existing natural enemies to increase their effectiveness. This can
be achieved by mass production and periodic release of natural enemies of the
pest, and by genetic enhancement of the enemies to increase their effectiveness
at control. One of the first successful cases of biological control in greenhouses
was that of the parasitoid Encarsia formosa against the greenhouse whitefly Tri-
aleurodes vaporariorum on tomatoes and cucumbers [1,2].

Recently, it is of great interests to investigate the models with impulsive
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perturbations in biological populations. Based on the classical Lotka-Volterra
predator-prey system, many paper{3-6] suggested impulsive differential equations
to model the process of periodically releasing natural enemies at fixed time for
pest control. Impulsive differential equations are found in almost every domain
of applied sciences and have been studied in many investigation [7-11].

In the nature world, there are many species (especially insect) whose individ-
ual members have a life history that takes them through two stages, immature
and mature. There have been some works on modelling and considering the
stage-structured models with various life stages[12-15]. Aiello and Freedman
[16] constructed and studied a time delay model of single species growth with
stage structure as the following:

24 (t) = axy — By — ae BTas(t —7) (1.1)
{ zh(t) = ae Pyt — 7) — Lz :
where x1(t), z2(t) represent the immature and mature populations densities re-
spectively, 7 represents a constant time to maturity, and «, 3, are positive
constants.
In 1970, Parrish and Saila [17] constructed and studied the following predator-
prey system with two prey and one predator as the following:

2'(t) = 2(t) (1 - ka(t) — muy(t) — moz(t))
Y () = y(O)(r — day(t) — asa(t) - boz(t) (1.2)
2(t) = 2(t)(—d + dmaz(t) + Abay(t))

where z(t), y(t), 2(t) are the densities of the two prey, one predator at time ¢
respectively, 1, k, my, mg, r,ds, a2, b, d, X are positive constants. .

In this paper, we consider the following a delayed prey-dependent consump-
tion two-prey one-predator models with stage-structure for prey and periodic
impulsive perturbations of predator:

z(t) = anza(t) — Br21(t) — are P imy(t — 1)

Th(t) = e Pyt — 1) — dizd — arza(t)y2(t) — brzo(t)2(t)

Yi(t) = aaya(t) — Loy (t) — cse P22y5(t — 72) t #nT,
ya(t) = aze™ P2 yo(t —72) — doyh — apa(t)ya(t) — baya(t)2(2)

2'(t) = z(t)(—d + Abr2a(t) + Ab2ya(t))

Az(t)=1p t=nT

(1.3)
where z1(t), z2(t) represent the immature and mature population densities for
prey z(t) respectively, yi(t),y2(t) represent the immature and mature popu-
lation densities for prey y(t) respectively, z(t) denotes the density of preda-
tor. Ty, 7Ty represents a constant time to maturity of prey x;(t),y1(t), and
ai, B1,ag, B2, a1, a9,b1,b2,dy,do,d and X are positive constants.This model is
derived as follows. We assume that at any time ¢ > 0, birth into the imma-
ture population is proportional to existing mature population with proportion-
ality constant «; and ag of x2(t), y2(t), respectively. We then assume that the
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death rate of immature population is proportional to the existing immature
population with proportionality constant 3; and Gz for z1(t), y1(t), respectively.
B3, B2, d1,d2 and d are called the death rate of x1(t), z2(t), y1(t), y2(t), 2(t), re-
spectively. A is the rate of conversing prey into predator. a1, ag are competitive
coefficients of mature population x,(¢) and prey ya2(t). Az(t) = p,p > 0 is the
releasing amount of natural enemies at t = nT,n € N and N = {1,2,---}, T is
the period of impulsive of the predator.

The initial data (21 (t), 22(t), y1(t), y2(t), 2(2)) for system (1.3) are
(T1,22, Y1, 42,2 € C([-7,0], R), 2:(0) > 0,,4,(0) > 0,2(0) > 0,i=1,2.)
where 7 = max{n,Tz},Ri = {(x1,22,%1,Y2,2) : 21 > Q22 > 0,1 > 0,42 >

0,z > 0}, and we impose the condition
0 0
1’1(0) :/ alxz(Q)eﬁlﬂdG, Yi (0) = / agyg(ﬁ)eﬁz(}dt?,
—Ti —T2
which present the total surviving immature population for mature x2(t), y2(t)
from the obgerved births on -7 <t < 0,~m <t <0, respectively.

The organization of the paper is as follows. In Section 1, we introduce a
time delay and two-prey one-predator models with age-structure for a prey and
periodic constant impulsive perturbation of predator. In Section 2, we will give
some notations and lemmas. In Section 3 | we analyze the dynamic behavior of
such a system. We show that there exists a prey-eradication periodic solution
of globally attractive when impulsive effect satisfies the conditions. Moreover,
we prove the system is permanent by analytic method. Lastly, we give a brief
discussion.

2. Preliminaries

Underside, we will give some definitions, notations and some lemmas which
will be useful for our main results.

Let Ry =[0,00). Denote f = (f1, f2, f3, f4, f5) the map defined by the right
hand of the first second third equations of system (1.3). Let V : Ry x RS — Ry,
then V is said to belong to class Vj if

(1) V is continuous in (nT,(n + 1)T] x R% for each X € R%},n € N,

lim V(t,y) =V (nT™, X) exists.
) —(nT+ X)
(2) V is locally Lipschitzian in X.

Definition 2.1 Let V ¢ Vg, then for (t, X) € (nT, (n+ 1)T] x R%, the upper
right derivative of V (¢, ) with respect to the impulsive differential system (1.3)
is defined as

. 1
DYVt X) = hlim+ sup E[V(t +h X +hf(tx)) -V, X)]
—+0
The solution of system (1.3) is a piecewise continuous function X : Ry — Ri
, X(t) is continuous on (nT,(n + )T}, n € N and X(t*) = lim. X(t) exists.
t—1

The smoothness properties of f guarantee the global existence and uniqueness



1100 Shuwen Zhang and Dejun Tan

of solution of system (1.3), for the details see book [7]. The following lemma is
obvious. We will use an important comparison theorem on impulsive differential
equation [7].

Lemma 2.1. Suppose V € V. Assume that

{ DYV (t, X) < g(t,V(t, X)) t#nT 2.1)
V{t, X)) <9 (V(t, X)) t=nT '

where g : Ry X Ry — R is continuous in (nT, (n+1)T| X Ry and foru € Ry,n €

sy h(mT+ )g(t, v) = g(nT,u) exists, ¥y, : Ry — Ry is non-decreasing. Let
t,v)—{(n U

r(t) be mazimal solution of the scalar impulsive differential equation

/() = g{t, u(t)) t#nT
uw(tt) = P¥n(u(t)) t=nT (2.2)
U(0+) = Up

existing on [0,00). Then V (01, Xo) < ug, implies that V(¢, X (t)) <r(t), t >0,
where X (t) is any solution of (1.3).

We give basic properties about the following subsystem of system (1.3).

Z(t) = —dz(t) t #nT,

{ Az(t)=p t=nT (2:3)

System (2.3) is a periodically impulsive forced linear system, it is easy to obtain
positive periodic solution of the system (2.3). That is,

“(t) = pexp(—d(t — nT))

1 —exp(—dT)
where initial value z*(07) = ﬁ}ﬂﬂ“% Since the solution of the system (2.3)
is

b€ (nT,(n+1)T|,ne N (2.4)

A0) = ((01) — TS o) +27()

we get
Lemma 2.2. For a positive periodic solution z*(t) of system (2.3) and every
solution z(t) of system (2.3), we have |2(t) — 2*(t)] — 0, as t — 0.

Lemma 2.3 Suppose X(t) = (z1(t), z2(t), y1(t), y2(t), 2(t)) is a any solution
of system (1.3) with X(0%) > 0 for allt > 0. Then X(t) > 0, for allt > 0 if
X(0%) > 0.

Proof. Tt is obvious 2(t) > z(0)exp(—dt) > 0 and

x2(t) > z2(0)exp(— /Ot(dlatg(O) + a1y2(0) + b12(8))do) > 0,

ya(t) = yz(O)ewp(‘/O (d2y2(6) + aaza(6) + b22(6))df) >0,
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Finally we consider the following equation
§'(t) = —Bis(t) — ane P ay(t — 1), $(0) = 21 (0) (2.5)

and comparing with (1.3), we note that if s(t) is the solution of (2.5), then
z1(t) > s(t) for 0 < t < 7. Solving system (2.5) gives

t
s(t) = e_ﬁlt[xl(O) — / aleﬁ(“*“)xz(u — 71 )du].
0

Hence

0 71
s(r) = eiﬁlt[/ 122 (0)ePr0dh — / P T g0 (y — 7y )d).
Jo

—T1

We thus have s(71) = 0 and therefore s(t) > 0 for t € [0,7]. By induction,
we can show that z(¢) > 0 for all ¢ > 0. By the same method, we can prove
y1(t) > 0 for all t > 0. O

Lemma 2.4. Consider the following equation:
§'(t) = as(t — 1) — b(t)s(t),

where a,7 > 0; s(t) > 0, for —7 <t < 0,and b(t) is T-periodic continuous for
t € [0,T), and b(TT) = b(0"), we have:

1) If a > b, then tligl s(t) = 400, 2) Ifa<b, then . h-IiP s(t) = 0.
Lemma 2.5. Consider the following equation:

s'(t) = as(t — 1) — bs(t) — cs%(t),

where a,b,c, 7 > 0; s(t) >0, for —7 <t < 0; we have

1) Ifa>b, then lim s(t) = 23%;

t—-+oo

2) If a < b, then . lir+n s(t) = 0.

Definition 2.2 System (1.3) is said to be permanent if there exist constants
M > m > 0 such that m < z1(¢t) < M,m < z5(t) < M,m < y1(t) < M,m <
y2(t) < M,m < z(t) < M for all ¢ sufficiently large, where X (t) is any solution
of system (1.3) with X(0%) > 0.

Lemma 2.6 There exists a constant M > 0, such that z1(t) < M, z5(t) <
M,y (t) < M, ya(t) < M, 2(t) < M for each solution
X(t) = (@i(t), 22(t), y1 (), y2(2), 2(t))
of system (1.3) with all t large enough.
Proof. Define function V (¢, X(t)) such that

V(t, X(1) = Ax1(t) + Aza(t) + Ayr (t) + Ay (t) + 2(t)
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then V € V. We calculate the upper right derivative of V (¢, X') along a solution
of system (1.3) and get the following impulsive differential equation

D+V(t) -+ LV(t) = k‘lwz(t) - )\(ﬁl - L)xl (t) — )\dll'%(t) — )\a1$2(t)y2(t)+
kaya(t) — A(B2 — L)y1 (t) — Mdaya (t) — a2 z2(t)y=(t) — (d — L)z(t), ¢ # nT,
Vi) =V(@t)+p t=nT
where k; = AM(L+a;),i =1,2. Let 0 < L < min{B, B2, d}, then DYV (¢)+ LV (1)
is bounded. Select Lo and L; such that
DYV(t) < —LoV(t) + L1 t#nT
VtH)y=v#t)+p t=nT
where Ly, L1 are two positive constants.
According to Lemma 2.3, for £ > 0, we have

—nLyT
V(t) < (V(0+) - & e_L"t + P(l —e eLoTefLo(tfnT) + £1_

L[) ) eLOT—l L()
Hence Lo
. Ly pero
< D42
th“glo Vie) = L + eloT — 1

Therefore, V(t,z) is ultimately bounded, and we obtain that each positive
solution of system (1.3) is uniformly ultimately bounded. This completes the
proof. 0

3. Extinction and permanence

In this section, we study the global attractivity of prey eradication periodic
solution. Finally, we prove the permanence of the system (1.3).

Theorem 3.1. Periodic solution X*(t) = (0,0,0,0, 2*(t)) of the system (1.3) is

globally attractive provided o e < % and cpe P22 < %.

Proof. Let (z1(t), z2(t), y1(t), y2(t), 2(¢)) be any solution of system (1.3). Since
ae B < %,i = 1,2, we choose 1 > 0 small enough, such that
bipexp(—dT) s
T—exp(—dT) +bie1 < 0,0 =1,2.

. . xp(—dT
From the fourth equation of system (1.3), we get z(t) > % — 1.

aie—,@ﬂi _

By system (1.3), we have

8T exp(—dT
2y(t) < cne” Pyt — ) — bl(%l(—)(—@% —e1)aa(t) — dizs(t)
B pexp(—dT
Yo(t) < cse™ Pyt — 1) — 52(#(%”)) —e1)y2(t) — day3(t)
Consider the following system, let v(¢) be the solution of
pexp(—dT)

vi(t) = aie_ﬂ”"v(t — 1) — b —e1)v;(t) — div?(t),i =1,2.

1 — exp(—dT)
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By lemma 2.4, we have v;(t) — 0,4 = 1,2 as t — co. From Lemma 2.1, then
z2(t) < v1(t), y2(t) < va(t) and z2(t) — 0 yo(t) — 0 as t — oco.

From
¢

21(t) = 21 ()=t + / cnza ()= =0 g,

t—7y
i

y1(t) = y1(0)e P2t 4 / a2$2(9)€7ﬁ2 (t=0qp,
t—72

we obtain that z,(t) — 0,y;(t) — 0 as t — oo.

Since tlim za(t) = 0, tlim y2(t) = 0. For any e3 > 0, such that —d + \bje3 +
/\bg&‘g < 0.
We have

—dz(t) < 2'(t) < 2(t)(—d + Abrez + Abacs).

By Lemma 2.1 and Lemma 2.2, we obtain 21(t) < 2(t) < 22(t),21(t) — 2* (),
and 22(t) — 23(t) as t — oo, where 2 (t) is solution of system (2.3), zo(t) is
solution of

2'(t) = 2(t)(—d + Abies + Abacs3) t # nT,
Az(t)=p t=nT (3.3)
w(0) =2(0") >0

#(py _ pexp((—d+AbiestAbaea)(t—nT))
where 23 (t) = pelBexp((_diigznmiihss);) , T <t <(n+1)T. Let g5 — 0, we
get z(t) — 2*(t) as t — oo. This completes the proof. O

Theorem 3.2. The system (1.3) is permanent if d > max{\by1 L1, \bz L},

pexp((—d + AbaLy)T)

>0
1 - exp((—d + )\bQLQ)T)

Oéleﬁ’BlTl — (I]LQ — b1

" (~d -+ X L)T)
—d + Ab1 L
“Berr _ o1 p, PEXP 171 >0
“2¢ e T ep((—d + Aoy L))
e PiTi bipexp(—dT) .
where *¢— — di(f’fe;g(*d%)) =L;,i=1,2.

Proof Suppose X(t) = (z1(t), z2(t), y1(t), y2(t), 2(t)) is any solution of system
(1.3) with X(0) > 0. Form Lemma 2.6, we know that the solution of system
(1.3) is bounded. Note that
pexp(—dT)
1 —exp(—dT)
pexp(—dT)
1 —exp(—dT) va(t)

zh(t) < ane P gyt — 1) — dyzd — by

(E2(t)

Yo (t) < ane P2y (t — 1) — dayd — by
Considering the following comparison equations

() = e (- ) — diod — by 22Dy (1)
v1(0) = 22(0)
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v(0) = 1y2(0)

we have 22(t) < v1(t) and v1(t) — alexlﬂ - dl”(lffj;’;(_df%)) = Ly, then z3(t) <
L1+ €1,61 > 0 for t large enough. And, we have y2(t) < va(t) and vy(t) —
O‘”ZQQ — dzbflpezf]g(_dg]z)) = Ly, then ya(t) < Ly + £3,€2 > 0 for ¢ large enough.
Let ms = (—1”% g, > 0. By Lemma 2.1, clearly we have 2(¢) > ms for
all ¢ large enough. We shall next find mz > 0 and m7 > 0 such that z2(t) > 7z

and y(t) > iy for t large enough. We will do it in the following two step:
d—)\bQ(L2+52)

{ Vh(t) = aseP22uy(t — 7o) — dov3 — bz%vg(t)

Stepl: We can select mg, my small enough such that 0 < my < —
0<my < %ﬁﬁel) and Abymy + Abamy < d. We will prove there exist

t1,t] € (0,00) such that za(t1) > mo,y2(t]) > my. Otherwise there will be
three cases.
1) There exists a t; > 0 such that yo(t]) > my4, but z2(t) < mg for allt > 0.
2) There exists a t; > 0 such that z3(¢1) > ma, but y2(t) < my for all £ > 0.
3) z2(t) < ma, y2(t) < my for all £ > 0.
We first consider case 1). Let ¢’ > 0 small enocugh such that o = e Fim
dimz — a1(La + e3) — by (LER{G2Amat e atel D 4 /) > 0. According to
the above assumption, we get

Z/(t) < Z(t)(—d + Abyms + )\bz(Lz + 82)).

By Lemma 2.1 and Lemma 2.2, we know 2(t) < wuq(t) and ui(t) — ui(t) as
t — oo, where uq(t) is the solution of

ul(t) = U ( )( d+)\b1m2+)\b2(L2 +€2)) t;énT,
Auy(t) = t=nT (3.4)
up (07) = ( =0

and
(t) pexp(( d+ Abimo + /\bz(Lg + 62))(t - TLT))
“ 1 —exp((—d 4 Abymg + Abz(La + £2))T)
Therefore, there exists a 71 > 0, such that z(¢) < uq(t) < uj(t) +¢’ and
zh(t) > ane P xy(t — 1) — (dimag + a1 (Lo + €2) + by(k + €))as

for t > Ty. Where k = lpfé()f’rf(((:dii_’\)\bgl’ﬁ;)‘;’;;(LLZQTEQQ))))TT)). By Lemma 2.4, z2(t) —
oo as t — oo, which is a contradiction to the boundedness of x2(t).
Case 2) can be analyzed by the same method as in case 1), so we omit it.

Next, we consider case 3). Choose ” > 0, such that
pexp((—d + Abyma + Abamy)T)
1-— exp((—d + )\blmz + /\b2m4)T)

and aze™P2™ — (dymy + azma + by lpfjfgg(‘_d,;*;’gjfj;*;’;;"n;jf;) +¢") > 0. By the

assumption case 3), we have

,t € (nT, (n+ 1)T).

+e")>0

are P (dimg + aymy + by (
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Z'(t) < 2(8)(—d + Xbyma + Abama).

By Lemma 2.1 and Lemma 2.2, we know 2(t) < us(t) and ua(t) — u}(t) as
t — 00, where ug(t) is the solution of

U{Z(t) = UQ(t)(*d + Abimo + /\bgm4) t # nT’,
Aup(t)=p t=nT (3.5)
uz(07) = 2(07) >0

* xp((—d+Abymat+-Ab —nT .
and u(t) = piféip<<td+’§'bfﬁgfﬁﬁ$>)T)))’t € (nT, (n + 1)T]. Therefore, there

exists a T3 > 0, such that

2(t) < wualt) <ul(t) + "

and

Th(t) > ane P ay(t — 1) — (dimg 4 ayma + bl 4+ €”))aa(t)

Ya(t) 2 ase™ P yy(t — 1) — (doma + agma + ba(l +€”))ya(t)
for t > T3, where

_ pexp((—d + Abimg + Xbamy)T)
1 —exp((—d + Abyms + Abama)T)

By the same method as in above case, we have z3(t) — oo and y2(t) — oo as

t — oo which is a contradiction.

From the above three cases, we conclude that ,three exist t; > 0,t] > 0 such
that :L’g(tl) 2 mo, yg(t/l) > my.

Step 2. If 22(t1) > mo for all t > ¢, then our aim is obtained. Otherwise,
we consider the case that is oscillatory about mo. Let ty = tiiltfl{m(t) < mg}.

Then z2(t) > my for t € [ty,t2), and xa(t2) = my since x9(t) is continuous. If

x2(t) < mg for t > tg, then like Stepl,we know that it will lead to a contradiction

of boundedness of x2(t). There exists t3 = gltf {z2(t) < ma} and t2 < t3. Then
2

z2(t) > my for t € [t,t3), and xa(tz) = mo. After finite times of the above
process, we stop and we will complete the proof. Otherwise, we can find a time
sequence {1 <y <--- <tgp <tagpq1 < ---, which has the following property:

(1) xg(ti) =ms for i = 2,3,4, H

(2) z2(t) <mg for t € (tok, tok41), b =1,2,3,-

(3) .’L‘Q(t) >mg fort e (t2k+1,t2k+2), k=1,2,3,--+

In the following, we firstly show that that there exists Tp > 0 such that
sup{tar — tok41 k € N} = Ty < +oo. Otherwise, there exists a subsequence
(tak; — tok,—1) — 00, k; — 0o. As in the proof of the first step, this will lead to
a contradiction of the boundedness of x5(¢).

Notice

xé(t) Z (—dlmg (t) —aiyY2 (t) — blz(t)):cz (t) Z (*dl’fflg —aq (L2 +€2) — blM))JZQ(t)
for t € (tak—1,%t21). We obtain
1‘2(t) > mo exp(—(dlmg + a]v(Lz + 62) + b1M)T0) =Tny.
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Hence x2(t) > gz for ¢ > #;.

By the same method, we can prove that there exists 77 such that ya(t) > g
for ¢ > t. Lately, we prove that there is an m; > 0 such that z1(t) > m; for t
large enough. We define m; 1= oy {1 — e‘ﬂln)mg. By first equation of system
(1.3), we have

t
.Z‘,1(t) > $1(0)e_f317'1 +a1/ xg(u)eﬁl(“—t)du_
t—71

Hence, for t > t; + 71, we have
2)(8) > 21(0)e P gy (1 — e A1)y,
By the same method, we prove that y;(t) > mg for t large enough, where
ms = aa(l — e P22 )my.

By the above discussion, system (1.3) is permanent. The proof is complete.
O

4. Conclusion

In this paper, we introduce a time delay and pulse into the predator-prey
models with stage-structure for prey and theoretically analyze the effects of
impulsive releasing natural enemy of pest for controlling the pest.

By Theorem 3.1, we know that prey-eradication periodic solution (0,0, 0,0,
z*(t)) is globally attractive if
1€ 711 — exp(—dT)) aqe P272(1 — exp(—dT))

by exp(—dT) ’ by exp(—dT)

By Theorem 3.2, if p < min{ A4, B}, where A = (“16%”bjZ;ﬁfiﬁ;ﬁ,‘fﬁ;f“b”?”,

B = (O‘Qe*ﬁﬂzb;‘zi(l)_ (;_;;;:f’[(;)d +A01E1)) then system (1.3) is permanence. From

the prove of Theorem 3.1 and Theorem 3.2, we can derive the following results.

are P17 (1 — exp(—dT)) cp< (aze™P27 — a3 L1)(1 — exp(—d + Ab1L1))
by exp(—dT) b by exp(—d + Ab1Lq)

then z,(t) — 0,22(t) — 0 as t — oo and y1(¢), y2(t) are permanent.

aze™P272(1 — exp(—dT)) < (e P — a1 L) (1 — exp(—d + Ab2Lo))
by exp(—dT) b1 exp(—d + AbaLs)

then y,(t) — 0o and y»(t) — oo as t — oo and z1(t), z2(t) are permanent.

}.

a
P > max{

If

b2

If

?
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