References
- Adolf, J. E., Krupatkina, D., Bachvaroff, T. & Place, A. R. 2007. Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum. Harmful Algae 6:400- 412. https://doi.org/10.1016/j.hal.2006.12.003
- Arts, M. T., Ackman, R. G. & Holub, B. J. 2001. "Essential fatty acids" in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122-137. https://doi.org/10.1139/f00-224
- Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. https://doi.org/10.1139/y59-099
- Burja, A. M., Radianingtyas, H., Windust, A. & Barrow, C. J. 2006. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl. Microbiol. Biotechnol. 72:1161-1169. https://doi.org/10.1007/s00253-006-0419-1
- Calder, P. C. & Yaqoob, P. 2009. Understanding omega-3 polyunsaturated fatty acids. Postgrad. Med. 121:148-157.
- Coutteau, P., Brendonck, L., Lavens, P. & Sorgeloos, P. 1992. The use of manipulated baker's yeast as an algal substitute for the laboratory culture of Anostraca. Hydrobiol. 234:25-32. https://doi.org/10.1007/BF00010776
- Droop, M. R. 1959. A note on some physical conditions for cultivating Oxyrrhis marina. J. Mar. Biol. Assoc. U. K. 38:599-604. https://doi.org/10.1017/S0025315400007025
- Jeong, H. J., Kang, H., Shim, J. H., Park, J. K., Kim, J. S., Song, J. Y. & Choi, H. -J. 2001. Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. Mar. Ecol. Prog. Ser. 218:77-86. https://doi.org/10.3354/meps218077
- Jeong, H. J., Kim, J. S., Yoo, Y. D., Kim, S. T., Kim, T. H., Park, M. G., Lee, C. H., Seong, K. A., Kang, N. A. & Shim, J. H. 2003. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides. J. Eukaryot. Microbiol. 50:274-282. https://doi.org/10.1111/j.1550-7408.2003.tb00134.x
- Jeong, H. J., Lim, A. S., Yoo, Y. D., Lee, M. J., Lee, K. H., Jang, T. Y. & Lee, K. 2014. Feeding by heterotrophic dinoflagellates and ciliates on the free-living dinoflagellate Symbiodinium sp. (Clade E). J. Eukaryot. Microbiol. 61:27-41. https://doi.org/10.1111/jeu.12083
- Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H. & Song, J. Y. 2008. Feeding and grazing impact by small marine heterotro-phic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol. 55:271-288. https://doi.org/10.1111/j.1550-7408.2008.00336.x
- Jeong, H. J., Song, J. E., Kang, N. S., Kim, S., Yoo, Y. D. & Park, J. Y. 2007. Feeding by heterotrophic dinoflagellates on the common marine heterotrophic nanoflagellate Cafeteria sp. Mar. Ecol. Prog. Ser. 333:151-160. https://doi.org/10.3354/meps333151
- Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
- Joordens, J. C. A., Kuipers, R. S. & Muskiet, F. A. J. 2007. Preformed dietary DHA: the answer to a scientific question may in practice become translated to its opposite. Am. J. Hum. Biol. 19:582-584. https://doi.org/10.1002/ajhb.20675
- Kitajka, K., Sinclair, A. J., Weisinger, R. S., Weisinger, H. S., Mathai, M., Jayasooriya, A. P., Halver J. E. & Puskas, L. G. 2004. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc. Natl. Acad. Sci. 101:10931-10936. https://doi.org/10.1073/pnas.0402342101
- Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S. & Kraay, G. W. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol. 135:191-198. https://doi.org/10.1007/s002270050616
- Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
- Liu, Y., Tang, J., Li, J., Daroch, M. & Cheng, J. J. 2014. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists. Appl. Microbiol. Biotechnol. 98:9643-9652. https://doi.org/10.1007/s00253-014-6032-9
- Lund, E. D., Chu, F. -L. E., Harvey, E. & Adolf, R. 2008. Mechanism(s) of long chain n-3 essential fatty acid production in two species of heterotrophic protists: Oxyrrhis marina and Gyrodinium domains. Mar. Biol. 155:23- 36. https://doi.org/10.1007/s00227-008-1003-2
- Mendes, A., Reis, A., Vasconcelos, R., Guerra, P. & da Silva, T. L. 2009. Crypthecodinium cohnii with emphasis on DHA production: a review. J. Appl. Phycol. 21:199-214. https://doi.org/10.1007/s10811-008-9351-3
- Park, J., Jeong, H. J., Yoon, E. Y. & Moon, S. J. 2016. Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method. Algae 31:391-401. https://doi.org/10.4490/algae.2016.31.12.7
- Roberts, E. C., Wootton, E. C., Davidson, K., Jeong, H. J., Lowe, C. D. & Montagnes, D. J. S. 2010. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms. J. Plankton Res. 33:603-614.
-
Sijtsma, L. & de Swaaf, M. E. 2004. Biotechnological production and applications of the
${\omega}$ -3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 64:146-153. https://doi.org/10.1007/s00253-003-1525-y - Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54:438-463. https://doi.org/10.1093/ajcn/54.3.438
- Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96. https://doi.org/10.1263/jbb.101.87
- Sukhija, P. S. & Palmquist, D. L. 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 36:1202-1206. https://doi.org/10.1021/jf00084a019
- Tang, K. W. & Taal, M. 2005. Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J. Exp. Mar. Biol. Ecol. 318:85-98. https://doi.org/10.1016/j.jembe.2004.12.004
- Veloza, A. J., Chu, F. L. E. & Tang, K. W. 2006. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol. 148:779-788. https://doi.org/10.1007/s00227-005-0123-1
- Yang, Z., Jeong, H. J. & Montagnes, D. J. S. 2011. The role of Oxyrrhis marina as a model prey: current work and future directions. J. Plankton Res. 33:665-675. https://doi.org/10.1093/plankt/fbq112
Cited by
- Trophic upgrading and mobilization of wax esters in microzooplankton vol.7, pp.None, 2017, https://doi.org/10.7717/peerj.7549
- Transcriptomic Response to Feeding and Starvation in a Herbivorous Dinoflagellate vol.6, pp.None, 2017, https://doi.org/10.3389/fmars.2019.00246
- Intraspecific variations in macronutrient, amino acid, and fatty acid composition of mass-cultured Teleaulax amphioxeia (Cryptophyceae) strains vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.6.4
- First Report of the Dinoflagellate Genus Effrenium in the East Sea of Korea: Morphological, Genetic, and Fatty Acid Characteristics vol.12, pp.9, 2020, https://doi.org/10.3390/su12093928
- Sustainable production of food grade omega-3 oil using aquatic protists: Reliability and future horizons vol.62, pp.None, 2021, https://doi.org/10.1016/j.nbt.2021.01.006