DOI QR코드

DOI QR Code

Fatty acid composition and docosahexaenoic acid (DHA) content of the heterotrophic dinoflagellate Oxyrrhis marina fed on dried yeast: compared with algal prey

  • Yoon, Eun Young (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ;
  • Park, Jaeyeon (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ;
  • Jeong, Hae Jin (Environment and Resource Convergence Center, Advanced Institutes of Convergence Technology) ;
  • Rho, Jung-Rae (Department of Marine Biotechnology, Kunsan National University)
  • Received : 2016.12.06
  • Accepted : 2017.03.05
  • Published : 2017.03.15

Abstract

The heterotrophic dinoflagellate Oxyrrhis marina is known to produce high levels of docosahexaenoic acid (DHA) when fed on diverse algal prey. However, large-scale culturing of algal prey species is not easy and requires a large amount of budget, and thus more easily cultivable and low-cost prey is required. Dried yeast was selected as a strong candidate for an alternative prey in our preliminary tests. Thus, we explored the fatty acid composition and DHA production of O. marina fed on dried yeast and compared these results to those of O. marina fed on two algal prey species: the phototrophic dinoflagellate Amphidinium carterae and chlorophyte Chlorella sp. powder. O. marina fed on dried yeast, which does not contain DHA, produced the same high level of DHA as those fed on DHA-containing A. carterae. This indicates that O. marina is likely to produce DHA by itself regardless of prey items. Furthermore, the DHA content (and portion of total fatty acid methyl esters) of O. marina satiated with dried yeast, 52.40 pg per cell(and 25.9%), was considerably greater than that of O. marina fed on A. carterae (26.91 pg per cell; 15.7%) or powder of Chlorella sp. powder (21.24 pg per cell; 16.7%). The cost of dried yeast (approximately 10 US dollars for 1 kg dried yeast) was much lower than that of obtaining the algal prey (approximately 160 US dollars for 1 kg A. carterae). Therefore, compared to conventional algal prey, dried yeast is a more easily obtainable and lower-cost prey for use in the production of DHA by O. marina.

Keywords

References

  1. Adolf, J. E., Krupatkina, D., Bachvaroff, T. & Place, A. R. 2007. Karlotoxin mediates grazing by Oxyrrhis marina on strains of Karlodinium veneficum. Harmful Algae 6:400- 412. https://doi.org/10.1016/j.hal.2006.12.003
  2. Arts, M. T., Ackman, R. G. & Holub, B. J. 2001. "Essential fatty acids" in aquatic ecosystems: a crucial link between diet and human health and evolution. Can. J. Fish. Aquat. Sci. 58:122-137. https://doi.org/10.1139/f00-224
  3. Bligh, E. G. & Dyer, W. J. 1959. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917. https://doi.org/10.1139/y59-099
  4. Burja, A. M., Radianingtyas, H., Windust, A. & Barrow, C. J. 2006. Isolation and characterization of polyunsaturated fatty acid producing Thraustochytrium species: screening of strains and optimization of omega-3 production. Appl. Microbiol. Biotechnol. 72:1161-1169. https://doi.org/10.1007/s00253-006-0419-1
  5. Calder, P. C. & Yaqoob, P. 2009. Understanding omega-3 polyunsaturated fatty acids. Postgrad. Med. 121:148-157.
  6. Coutteau, P., Brendonck, L., Lavens, P. & Sorgeloos, P. 1992. The use of manipulated baker's yeast as an algal substitute for the laboratory culture of Anostraca. Hydrobiol. 234:25-32. https://doi.org/10.1007/BF00010776
  7. Droop, M. R. 1959. A note on some physical conditions for cultivating Oxyrrhis marina. J. Mar. Biol. Assoc. U. K. 38:599-604. https://doi.org/10.1017/S0025315400007025
  8. Jeong, H. J., Kang, H., Shim, J. H., Park, J. K., Kim, J. S., Song, J. Y. & Choi, H. -J. 2001. Interactions among the toxic dinoflagellate Amphidinium carterae, the heterotrophic dinoflagellate Oxyrrhis marina, and the calanoid copepods Acartia spp. Mar. Ecol. Prog. Ser. 218:77-86. https://doi.org/10.3354/meps218077
  9. Jeong, H. J., Kim, J. S., Yoo, Y. D., Kim, S. T., Kim, T. H., Park, M. G., Lee, C. H., Seong, K. A., Kang, N. A. & Shim, J. H. 2003. Feeding by the heterotrophic dinoflagellate Oxyrrhis marina on the red-tide raphidophyte Heterosigma akashiwo: a potential biological method to control red tides. J. Eukaryot. Microbiol. 50:274-282. https://doi.org/10.1111/j.1550-7408.2003.tb00134.x
  10. Jeong, H. J., Lim, A. S., Yoo, Y. D., Lee, M. J., Lee, K. H., Jang, T. Y. & Lee, K. 2014. Feeding by heterotrophic dinoflagellates and ciliates on the free-living dinoflagellate Symbiodinium sp. (Clade E). J. Eukaryot. Microbiol. 61:27-41. https://doi.org/10.1111/jeu.12083
  11. Jeong, H. J., Seong, K. A., Yoo, Y. D., Kim, T. H., Kang, N. S., Kim, S., Park, J. Y., Kim, J. S., Kim, G. H. & Song, J. Y. 2008. Feeding and grazing impact by small marine heterotro-phic dinoflagellates on heterotrophic bacteria. J. Eukaryot. Microbiol. 55:271-288. https://doi.org/10.1111/j.1550-7408.2008.00336.x
  12. Jeong, H. J., Song, J. E., Kang, N. S., Kim, S., Yoo, Y. D. & Park, J. Y. 2007. Feeding by heterotrophic dinoflagellates on the common marine heterotrophic nanoflagellate Cafeteria sp. Mar. Ecol. Prog. Ser. 333:151-160. https://doi.org/10.3354/meps333151
  13. Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding, and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91. https://doi.org/10.1007/s12601-010-0007-2
  14. Joordens, J. C. A., Kuipers, R. S. & Muskiet, F. A. J. 2007. Preformed dietary DHA: the answer to a scientific question may in practice become translated to its opposite. Am. J. Hum. Biol. 19:582-584. https://doi.org/10.1002/ajhb.20675
  15. Kitajka, K., Sinclair, A. J., Weisinger, R. S., Weisinger, H. S., Mathai, M., Jayasooriya, A. P., Halver J. E. & Puskas, L. G. 2004. Effects of dietary omega-3 polyunsaturated fatty acids on brain gene expression. Proc. Natl. Acad. Sci. 101:10931-10936. https://doi.org/10.1073/pnas.0402342101
  16. Klein Breteler, W. C. M., Schogt, N., Baas, M., Schouten, S. & Kraay, G. W. 1999. Trophic upgrading of food quality by protozoans enhancing copepod growth: role of essential lipids. Mar. Biol. 135:191-198. https://doi.org/10.1007/s002270050616
  17. Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163. https://doi.org/10.4490/algae.2014.29.2.153
  18. Liu, Y., Tang, J., Li, J., Daroch, M. & Cheng, J. J. 2014. Efficient production of triacylglycerols rich in docosahexaenoic acid (DHA) by osmo-heterotrophic marine protists. Appl. Microbiol. Biotechnol. 98:9643-9652. https://doi.org/10.1007/s00253-014-6032-9
  19. Lund, E. D., Chu, F. -L. E., Harvey, E. & Adolf, R. 2008. Mechanism(s) of long chain n-3 essential fatty acid production in two species of heterotrophic protists: Oxyrrhis marina and Gyrodinium domains. Mar. Biol. 155:23- 36. https://doi.org/10.1007/s00227-008-1003-2
  20. Mendes, A., Reis, A., Vasconcelos, R., Guerra, P. & da Silva, T. L. 2009. Crypthecodinium cohnii with emphasis on DHA production: a review. J. Appl. Phycol. 21:199-214. https://doi.org/10.1007/s10811-008-9351-3
  21. Park, J., Jeong, H. J., Yoon, E. Y. & Moon, S. J. 2016. Easy and rapid quantification of lipid contents of marine dinoflagellates using the sulpho-phospho-vanillin method. Algae 31:391-401. https://doi.org/10.4490/algae.2016.31.12.7
  22. Roberts, E. C., Wootton, E. C., Davidson, K., Jeong, H. J., Lowe, C. D. & Montagnes, D. J. S. 2010. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms. J. Plankton Res. 33:603-614.
  23. Sijtsma, L. & de Swaaf, M. E. 2004. Biotechnological production and applications of the ${\omega}$-3 polyunsaturated fatty acid docosahexaenoic acid. Appl. Microbiol. Biotechnol. 64:146-153. https://doi.org/10.1007/s00253-003-1525-y
  24. Simopoulos, A. P. 1991. Omega-3 fatty acids in health and disease and in growth and development. Am. J. Clin. Nutr. 54:438-463. https://doi.org/10.1093/ajcn/54.3.438
  25. Spolaore, P., Joannis-Cassan, C., Duran, E. & Isambert, A. 2006. Commercial applications of microalgae. J. Biosci. Bioeng. 101: 87-96. https://doi.org/10.1263/jbb.101.87
  26. Sukhija, P. S. & Palmquist, D. L. 1988. Rapid method for determination of total fatty acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 36:1202-1206. https://doi.org/10.1021/jf00084a019
  27. Tang, K. W. & Taal, M. 2005. Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J. Exp. Mar. Biol. Ecol. 318:85-98. https://doi.org/10.1016/j.jembe.2004.12.004
  28. Veloza, A. J., Chu, F. L. E. & Tang, K. W. 2006. Trophic modification of essential fatty acids by heterotrophic protists and its effects on the fatty acid composition of the copepod Acartia tonsa. Mar. Biol. 148:779-788. https://doi.org/10.1007/s00227-005-0123-1
  29. Yang, Z., Jeong, H. J. & Montagnes, D. J. S. 2011. The role of Oxyrrhis marina as a model prey: current work and future directions. J. Plankton Res. 33:665-675. https://doi.org/10.1093/plankt/fbq112

Cited by

  1. Trophic upgrading and mobilization of wax esters in microzooplankton vol.7, pp.None, 2017, https://doi.org/10.7717/peerj.7549
  2. Transcriptomic Response to Feeding and Starvation in a Herbivorous Dinoflagellate vol.6, pp.None, 2017, https://doi.org/10.3389/fmars.2019.00246
  3. Intraspecific variations in macronutrient, amino acid, and fatty acid composition of mass-cultured Teleaulax amphioxeia (Cryptophyceae) strains vol.34, pp.2, 2017, https://doi.org/10.4490/algae.2019.34.6.4
  4. First Report of the Dinoflagellate Genus Effrenium in the East Sea of Korea: Morphological, Genetic, and Fatty Acid Characteristics vol.12, pp.9, 2020, https://doi.org/10.3390/su12093928
  5. Sustainable production of food grade omega-3 oil using aquatic protists: Reliability and future horizons vol.62, pp.None, 2021, https://doi.org/10.1016/j.nbt.2021.01.006