• Title/Summary/Keyword: Preload Torque

Search Result 47, Processing Time 0.029 seconds

Effect of connection type on the screw loosening of implant system (지대주와 고정체의 체결방법에 따른 임플란트의 풀림거동에 관한 연구)

  • Choi, Jae-Min;Chun, Heoung-Jae;Han, Chong-Hyeon;Lee, Soo-Hong
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.486-491
    • /
    • 2004
  • A comparative study on the implant screw loosening under the initial clamping force and cyclic loads was conducted. The experiments were performed to evaluate the screw loosening behavior of the internal and external implant systems. It was found that the screw loosening torques of implant systems were significantly affected by the way how the abutment and fixture were connected due to the difference in the load transfer mechanism between abutment and fixture.

  • PDF

Performance Analysis of the Rubber Belt type CVT System (고무 벨트식 무단변속기 시스템의 성능분석)

  • Kim, Sung-Mo;Zheng, Chun-Hua;Lim, Won-Sik;Cha, Suk-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.376-381
    • /
    • 2011
  • CVT(Continuously Variable Transmission) is one of the most promising candidates for the future automobile transmission because of its continuously variable gear ratio and reduced shift shock. It is also possible to operate the power source at its high efficiency region with CVT. The CVT system consists of thrust plate, driving pulley, belt, driven pulley, and preload spring of output shaft. In this paper, the dynamic modeling of a CVT system is completed to obtain the static performances of CVT system. A simulator is implemented on Matlab(Simulink), which can analyse the static performances of a CVT system. The methods for improving the total efficiency of a motorcycle system are also proposed based on the simulation results. In this study we increase the capacity factor of CVT up to the three times of default specification.

Pivot Nonlinearity in Disk Drive Rotary Actuator : Measurement and Modeling (HDD 회전형구동장치의 피봇비선형성 측정 및 모델링)

  • 박재흥;변용규;장흥성;노광춘
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.11a
    • /
    • pp.419-424
    • /
    • 1996
  • As track density increases, the effects of nonlinearity in pivot bearing of hard disk drive on the servo performance are becoming more important in considering the range of inertia force and the input torque during settling and tracking mode. Recently, an increasing attention is given to more precise experimental observations and modelings of pivot nonlinearity for achieving higher performance of servo control. In this paper, we propose a new model that shows an improved prediction of the pivot nonlinearity than existing preload-plus-two-slope model at matching simulations and experimental results in both time and frequency domains. Experimental measurements are carried out to validate and identify the specific nonlinearity presents in the pivot bearing when its in fine motion. Using the experimental results new model along with the existing one are characterized and compared for relevancies.

  • PDF

AN INFLUENCE OF ABUTMENT MATERIALS ON A SCREW-LOOSENING AFTER CYCLIC LOADING (임플랜트 상부구조의 재료가 반복하중 후 나사풀림에 미치는 영향)

  • Lee, Tae-Sik;Han, Jung-Suk;Yang, Jae-Ho;Lee, Jae-Bong;Kim, Sung-Hun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.45 no.2
    • /
    • pp.240-249
    • /
    • 2007
  • Statement of problem: A phenomenon of screw-loosening in implant abutment is frequently occurred in a single and multiple implant restoration. Purpose: This study was performed to evaluate an effect of abutment material on screw-loosening before and after a cyclic loading. In a single-tooth implant, different materials of abutment, Type III Gold alloy and Zirconium composite$(ZrO_2/Al_2O_3)$ were used. Material and method: The Gold alloy(Type III) and Zirconium composite$(ZrO_2/Al_2O_3)$ were used to make a superstructure of implant, the one of types of UCLA, Each group was constituted of 5 sample with a 30-degree offset angulated loading platform. The external hexagonal fixture was rigidly hel d in a special holding zig to ensure solid fixation without rotation during the tightening and a cyclic loading. A Titanium-alloy screw was used to connect and controlled to be tighten in 20Ncm torque by a digital torque gauge. A 20 times of consecutive closing/opening cycle were performed to evaluate the immediate torque loss. In 5 sample of each material group, an initial opening torque was recorded during 3 closing/opening cycle, then 2Hz, 200N, 1,000,000 cyclic loadings were performed, then a opening torque was evaluated. Result & Conclusion: 1. In this limited study, titanium alloy screw tightened in 20Ncm, a cold-welding phenomen on was not observed during the 20 times of closing/opening cycle(p=0.11, p=0.18). 2. In titanium alloy abutment screw, repeated opening and closing of the screw caused to progressive decrease of opening torque(p=0.014). 3. The difference in preload of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant(p=0.78). 4. The difference in torque loss of screw between gold alloy abutment and ceramic$(ZrO_2/Al_2O_3)$ abutment was not significant after 2Hz,200N, 1,000,000 cyclic loading(p=0.92). 5. In titanium alloy abutment screw tightened by 20Ncm, the screw loosening was not significant on each group after 2Hz, 200Ncm, 1,000,000 cyclic loading(p=0.59).

Screw joint stability according to abutment screw materials

  • Jeong Yong-Tae;Chung Chae-Heon;Lee Heung-Tae
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.39 no.3
    • /
    • pp.297-305
    • /
    • 2001
  • Statement of problem. There have been previous studies about instability according to screw material by means of calculating preload in tightening screw or recording of the torque necessary to loosen screw after tightening screw. Purpose. The purpose of this study was to evaluate screw joint stability through the analysis of fitness at the mating thread surfaces between implant and screw after tightening screws made of different materials. Material and methods. In this study, screws were respectively used to secure a cemented abutment to a hexlock implant fixture; teflon coated titanium alloy screw and titanium alloy screw(Steri-Oss), gold-plated gold-palladium alloy screw and titanium alloy screw(Implant Innovation), gold screw and titanium screw(AVANA Dental Implant System). Each abutment screw was secured to the implant with recommended torque value using a digital torque controller. Each screw was again tightened after 10minutes. All samples were cross sectioned with sandpaper and polished. Then samples were evaluated with an scanning electron microscope analysis. Results. In titanium alloy screw, irregular contact and relatively large gap was present at mating thread surface. Also in teflon-coated titanium screw, incomplete seating and only partially contact was present at the mating thread surface. In gold-plated gold-palladium alloy screw, relatively close and tight contact without the presence of large gap was present by existing of gold coating at the mating thread surfaces. In gold alloy screw, relatively small gap between the mating components was seen. Conclusions. This result suggested that gold plated gold-palladium alloy screw and gold alloy screw achieved a greater degree of contact at the mating thread surfaces compared to titanium alloy screw and teflon-coated titanium alloy screw.

  • PDF

Finite element analysis of the effect of novel Lock Screw system preventing abutment screw loosening (지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구)

  • Im, Eun Sub;Kim, Jong Eun;Kim, Jee Hwan;Park, Young Bum
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.35 no.3
    • /
    • pp.132-142
    • /
    • 2019
  • Purpose: The purpose of this finite element analysis study is to introduce the novel Lock screw system and analyze its mechanical property to see if it can prevent abutment screw loosening. Materials and Methods: The Lock screw is a component tightened on the inside of the implant abutment which applies compressive force to the abutment screw head. To investigate the effect, modeling was done using CAD program and it was analyzed by finite element analysis under various load conditions. First, the preload was measured according to the tightening torque of the abutment screw then it was compared with the theoretical value to verify the analytical model. The validated analytical model was then divided into those with no external load and those with 178 N, and the tightening torque of the lock screw was changed to 10, 20, 30 Ncm respectively to examine the property of stress distribution on the implant components. Results: Using Lock screw under various loading conditions did not produce equivalent stresses beyond the yield strength of the implant components. In addition, the axial load was increased at the abutment-abutment screw interface. Conclusion: The use of Lock screw does not exert excessive stress on the implant components and may increase the frictional force between the abutment-abutment screw interface, thus it is considered to prevent loosening of the abutment screw.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE IMPLANT FRACTURES

  • Kim Yang-Soo;Kim Chang-Whe;Lim Young-Jun;Kim Myung-Joo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.3
    • /
    • pp.295-313
    • /
    • 2006
  • Statement of problem. Higher fracture rates were reported for Branemark implants placed in the maxilla and for 3.75 mm diameter implants installed in the posterior region. Purpose. The purpose of this study was to investigate the fracture of a fixture by finite element analysis and to compare different diameter of fixtures according to the level of alveolar bone resorption. Material and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for the 3i implant systems. Models were processed by the software programs HyperMesh and ANSA. Three-dimensional finite element models were developed for; (1) a regular titanium implant 3.75 mm in diameter and 13 mm in length (2) a regular titanium implant 4.0 mm in diameter and 13 mm in length (3) a wide titanium implant 5.0 mm in diameter and 13 mm in length each with a cementation type abutment and titanium alloy screw. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized as 650 N, and round and flat type prostheses were 12 mm in diameter, 9 mm in height were loaded to 600 N. Four loading offset points (0, 2, 4, and 6 mm from the center of the implants) were evaluated. To evaluate fixture fracture by alveolar bone resorption, we investigated the stress distribution of the fixtures according to different alveola. bone loss levels (0, 1.5, 3.5, and 5.0 mm of alveolar bone loss). Using these 12 models (four degrees of bone loss and three implant diameters), the effects of load-ing offset, the effect of alveolar bone resorption and the size of fixtures were evaluated. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView programs were used for post processing. Results. The results from our experiment are as follows: 1. Preload maintains implant-abutment joint stability within a limited offset point against occlusal force. 2. Von Mises stress of the implant, abutment screw, abutment, and bone was decreased with in-creasing of the implant diameter. 3. With severe advancing of alveolar bone resorption, fracture of the 3.75 and the 4.0 mm diameter implant was possible. 4. With increasing of bending stress by loading offset, fracture of the abutment screw was possible.

THE STUDY ON THE REMOVAL TORQUE OF THE DIAMOND LIKE CARBON COATED TITANIUM ABUTMENT SCREWS (DLC 표면 처리에 따른 임플랜트 지대주 나사의 풀림 현상에 관한 연구)

  • Koak Jai-Young;Heo Seong-Joo;Chang Ik-Tae;Yim Soon-Ho;Lee Jong-Yeop;Lee Kwang-Ryeol
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.41 no.2
    • /
    • pp.128-135
    • /
    • 2003
  • Statement of problem : Implant screw loosening remains a problem in implant prosthodontics. Some abutment screws with treated surfaces were introduced to prevent screw loosening and to increase preload. DLC(Diamond Like Carbon) film has similar properties on hardness, wear resistance, chemical stability, biocompatibility as real diamond materials. Purpose : The purpose of this study was to investigate the effect of lubricant layer on abutment screw and to discriminate more effective method between soft lubricant and hard lubricant to prevent screw loosening. Material and method : In this study, $1{\mu}m$ thickness DLC was used as protective, lubricating layer of titanium screws and 3 times removal torque was measured on the abutment screws to investigate the difference in 10 coated and 10 non-coated abutment screws. Results : The results indicated that the implants with DLC coating group were not more resistant to the applied force in screw loosening. At 32Ncm, the 3 times removal torque in DLC group were $27.75{\pm}2.89,\;25.85{\pm}2.35$ and $26.2{\pm}2.57$. The removal torque in no-coated abutment screws were $27.85{\pm}4.23,\;27.35{\pm}2.81$ and $27.9{\pm}2.31$, respectively. Conclusion : The lubricant layer used in this study was Diamond Like Carbon(DLC) and it have a properties of hard and stable layer. The DLC coating layer was hard enough to prevent distortion of screws in the repeated unscrewing procedure in clinical situation. The reduced friction coefficient in hard DLC layer was not effective to prevent screw loosening.

A comparative biomechanical study of original and compatible titanium bases: evaluation of screw loosening and 3D-crown displacement following cyclic loading analysis

  • Oziunas, Rimantas;Sakalauskiene, Jurgina;Jegelevicius, Darius;Januzis, Gintaras
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.70-77
    • /
    • 2022
  • PURPOSE. This study evaluated screw loosening and 3D crown displacement after cyclic loading of implant-supported incisor crowns cemented with original titanium bases or with three compatible, nonoriginal components. MATERIALS AND METHODS. A total of 32 dental implants were divided into four groups (n = 8 each): Group 1 used original titanium bases, while Groups 2-4 used compatible components. The reverse torque value (RTV) was evaluated prior to and after cyclic loading (1,200,000 cycles). Samples (prior to and after cyclic loading) were scanned with a microcomputed tomography (micro-CT). Preload and postload files were superimposed by 3D inspection software, and 3D crown displacement analysis was performed using root-mean-square (RMS) values. All datasets were analyzed using one-way ANOVA and Tukey's post hoc analysis. RESULTS. Significant variations were observed in the postload RTV, depending on the titanium base brand (P < .001). The mean postload RTVs were significantly higher in Groups 1 and 2 than in the other study groups. While evaluating 3D crown displacement, the lowest mean RMS value was shown in the original Group 1, with the highest RMS value occurring in Group 4. CONCLUSION. Within the limitations of this in vitro study and under the implemented conditions, it was concluded that the manufacturer brand of the titanium base significantly influenced screw loosening following the fatigue test and influenced 3D crown displacement after cyclic loading.

APPLICATION OF FINITE ELEMENT ANALYSIS TO EVALUATE PLATFORM SWITCHING

  • Kim Yang-Soo;Kim Chang-Whe;Jang Kyung-Soo;Lim Young-Jun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.6
    • /
    • pp.727-735
    • /
    • 2005
  • Statement of problem. Platform switching in implant prosthesis has been used for esthetic and biological purpose. But there are few reports for this concept. Purpose. The purpose of this study is evaluation of platform switching in wide implant by three dimensional finite element analysis. Materials and Methods. The single implant and prosthesis was modeled in accordance with the geometric designs for Osstem implant system. Three-dimensional finite element models were developed for (1) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with wide cemented abutment, titanium alloy abutment screw, and prosthesis (2) a wide diameter 3i type titanium implant 5 mm in diameter, 13 mm in length with regular cemented abutment, titanium alloy abutment screw and prosthesis(platform switching) was made for finite element analysis. The abutment screws were subjected to a tightening torque of 30 Ncm. The amount of preload was hypothesized to 650N, and round and flat type prostheses were loaded to 200 N. Four loading offset point (0, 2, 4, 6 mm from the center of the implants) were evaluated. Models were processed by the software programs HyperMesh and ANSA. The PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and HyperView were used for post processing. Results. The results from experiment were as follows; 1. von Mises stress value is increased in order of bone, abutment, implant and abutment screw. 2. von Mises stress of abutment screw is lower when platform switching. 3. von Mises stress of implant is lower when platform switching until loading offset 4 mm. 4. von Mises stress of abutment is similar between each other. 5. von Mises stress of bone is slightly higher when platform switching. Conclusion. The von Mises stress pattern of implant components is favor when platform switch ing but slightly higher in bone stress distribution than use of wide abutment. The research about stress distribution is essential for investigation of the cortical bone loss.