DOI QR코드

DOI QR Code

지대주 나사 풀림 방지를 위한 새로운 Lock Screw 시스템의 효과에 대한 유한요소해석적 연구

Finite element analysis of the effect of novel Lock Screw system preventing abutment screw loosening

  • 임은섭 (연세대학교 치과대학 보철과학교실) ;
  • 김종은 (연세대학교 치과대학 보철과학교실) ;
  • 김지환 (연세대학교 치과대학 보철과학교실) ;
  • 박영범 (연세대학교 치과대학 보철과학교실)
  • Im, Eun Sub (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Jong Eun (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Kim, Jee Hwan (Department of Prosthodontics, College of Dentistry, Yonsei University) ;
  • Park, Young Bum (Department of Prosthodontics, College of Dentistry, Yonsei University)
  • 투고 : 2019.06.02
  • 심사 : 2019.06.15
  • 발행 : 2019.09.30

초록

목적: 본 유한요소해석적 연구는 새로운 Lock screw 시스템을 소개하고 그 역학적 특성을 분석하여 Lock screw가 지대주 나사 풀림을 방지할 수 있는지 알아보려고 한다. 연구 재료 및 방법: Lock screw는 임플란트 지대주 내부에 체결하여 지대주 나사 두부에 압축력을 가하는 장치이다. 그 효과를 알아보기 위해 CAD 프로그램을 이용하여 모델링을 하였고, 이를 다양한 하중조건 하에서 유한요소해석법을 이용해 분석하였다. 우선 지대주 나사의 조임회전력에 따른 전하중을 측정하고 이론 값과 비교하여 해석모델을 검증하였다. 검증된 해석 모델을 외부 하중이 없는 것과 178 N을 부여한 것으로 나누어 Lock screw의 조임회전력을 각각 10, 20, 30 Ncm으로 변화시켰고, 이때 임플란트 구성요소의 응력 분포가 어떠한 특성을 보이는지 살펴보았다. 결과: 여러 하중조건 하에서 Lock screw의 사용은 임플란트 구성요소의 항복강도를 넘어서는 등가응력을 발생시키지 않았다. 또한 지대주-지대주 나사 계면에서 축방향 하중의 증가를 보였다. 결론: Lock screw의 사용은 임플란트 구성요소에 과도한 응력을 가하지 않으며, 지대주-지대주 나사 계면의 마찰력을 증가시켜 지대주 나사 풀림을 방지할 수 있을 것으로 판단된다.

Purpose: The purpose of this finite element analysis study is to introduce the novel Lock screw system and analyze its mechanical property to see if it can prevent abutment screw loosening. Materials and Methods: The Lock screw is a component tightened on the inside of the implant abutment which applies compressive force to the abutment screw head. To investigate the effect, modeling was done using CAD program and it was analyzed by finite element analysis under various load conditions. First, the preload was measured according to the tightening torque of the abutment screw then it was compared with the theoretical value to verify the analytical model. The validated analytical model was then divided into those with no external load and those with 178 N, and the tightening torque of the lock screw was changed to 10, 20, 30 Ncm respectively to examine the property of stress distribution on the implant components. Results: Using Lock screw under various loading conditions did not produce equivalent stresses beyond the yield strength of the implant components. In addition, the axial load was increased at the abutment-abutment screw interface. Conclusion: The use of Lock screw does not exert excessive stress on the implant components and may increase the frictional force between the abutment-abutment screw interface, thus it is considered to prevent loosening of the abutment screw.

키워드

참고문헌

  1. Goodacre CJ, Bernal G, Rungcharassaeng K, Kan JY. Clinical complications with implants and implant prostheses. J Prosthet Dent 2003;90:121-32. https://doi.org/10.1016/S0022-3913(03)00212-9
  2. Goodacre CJ, Kan JY, Rungcharassaeng K. Clinical complications of osseointegrated implants. J Prosthet Dent 1999;81:537-52. https://doi.org/10.1016/S0022-3913(99)70208-8
  3. Schwarz MS. Mechanical complications of dental implants. Clin Oral Implants Res 2000;11 Suppl 1:156-8. https://doi.org/10.1034/j.1600-0501.2000.011S1156.x
  4. Jemt T, Linden B, Lekholm U. Failures and complications in 127 consecutively placed fixed partial prostheses supported by Branemark implants: from prosthetic treatment to first annual checkup. Int J Oral Maxillofac Implants 1992;7:40-4.
  5. Hemmings KW, Schmitt A, Zarb GA. Complications and maintenance requirements for fixed prostheses and overdentures in the edentulous mandible: a 5-year report. Int J Oral Maxillofac Implants 1994;9:191-6.
  6. Winkler S, Ring K, Ring JD, Boberick KG. Implant screw mechanics and the settling effect: overview. J Oral Implantol 2003;29:242-5. https://doi.org/10.1563/1548-1336(2003)029<0242:ISMATS>2.3.CO;2
  7. Jorneus L, Jemt T, Carlsson L. Loads and designs of screw joints for single crowns supported by osseointegrated implants. Int J Oral Maxillofac Implants 1992;7:353-9.
  8. Bickford JH. An introduction to the design and behavior of bolted joints. 2nd ed. New York; Marcel Dekker; 1990. p. 127-35.
  9. Lang LA, Kang B, Wang RF, Lang BR. Finite element analysis to determine implant preload. J Prosthet Dent 2003;90:539-46. https://doi.org/10.1016/j.prosdent.2003.09.012
  10. Jorn D, Kohorst P, Besdo S, Rucker M, Stiesch M, Borchers L. Influence of lubricant on screw preload and stresses in a finite element model for a dental implant. J Prosthet Dent 2014;112:340-8. https://doi.org/10.1016/j.prosdent.2013.10.016
  11. Bulaqi HA, Mousavi Mashhadi M, Geramipanah F, Safari H, Paknejad M. Effect of the coefficient of friction and tightening speed on the preload induced at the dental implant complex with the finite element method. J Prosthet Dent 2015;113:405-11. https://doi.org/10.1016/j.prosdent.2014.09.021
  12. Geng JP, Tan KB, Liu GR. Application of finite element analysis in implant dentistry: a review of the literature. J Prosthet Dent 2001;85:585-98. https://doi.org/10.1067/mpr.2001.115251
  13. Lee YS, Kang KT, Han DH. The non-linear FEM analysis of different connection lengths of internal connection abutment. J Korean Acad Prosthodont 2016;54:110-9. https://doi.org/10.4047/jkap.2016.54.2.110
  14. McCracken M. Dental implant materials: commercially pure titanium and titanium alloys. J Prosthodont 1999;8:40-3. https://doi.org/10.1111/j.1532-849X.1999.tb00006.x
  15. Eom TG, Suh SW, Jeon G-R, Shin JW, Jeong CM. Effect of Tightening Torque on Abutment-Fixture Joint Stability using 3-Dimensional Finite Element Analysis. J Korean Acad Prosthodont 2009;47:125-35. https://doi.org/10.4047/jkap.2009.47.2.125
  16. Budinski KG. Tribological properties of titanium alloys. Wear 1991;151:203-17. https://doi.org/10.1016/0043-1648(91)90249-T
  17. Hsu ML, Chen FC, Kao HC, Cheng CK. Influence of off-axis loading of an anterior maxillary implant: a 3-dimensional finite element analysis. Int J Oral Maxillofac Implants 2007;22:301-9.
  18. Park CW, Kim SH, Yeo IS, Yoon HI, Han JS. Three-dimensional finite element analysis according to the insertion depth of an immediately loaded implant in the anterior maxilla. J Korean Acad Prosthodont 2018;56:105-13. https://doi.org/10.4047/jkap.2018.56.2.105
  19. Korioth TW, Cardoso AC, Versluis A. Effect of washers on reverse torque displacement of dental implant gold retaining screws. J Prosthet Dent 1999;82:312-6. https://doi.org/10.1016/S0022-3913(99)70086-7
  20. Versluis A, Korioth TW, Cardoso AC. Numerical analysis of a dental implant system preloaded with a washer. Int J Oral Maxillofac Implants 1999;14:337-41.
  21. Martin WC, Woody RD, Miller BH, Miller AW. Implant abutment screw rotations and preloads for four different screw materials and surfaces. J Prosthet Dent 2001;86:24-32. https://doi.org/10.1067/mpr.2001.116230
  22. Aboyoussef H, Weiner S, Ehrenberg D. Effect of an antirotation resistance form on screw loosening for single implant-supported crowns. J Prosthet Dent 2000;83:450-5. https://doi.org/10.1016/S0022-3913(00)70040-0
  23. Kim JH, Lim JH, Cho IH, Lee JS. A study of the anti-rotating inner post screw system as a means of preventing abutment screw loosening. J Korean Acad Prosthodont 2005;43:671-83.
  24. Haack JE, Sakaguchi RL, Sun T, Coffey JP. Elongation and preload stress in dental implant abutment screws. Int J Oral Maxillofac Implants 1995;10:529-36.
  25. Halliday D. Fundamentals of Physics. 10th ed. New Jersey; Wiley; 2013. p. 124-7.