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Statement of problem. Higher fracture rates were reported for Branemark implants placed in
the maxilla and for 3.75 mm diameter implants installed in the posterior region.

Purpose. The purpose of this study was to investigate the fracture of a fixture by finite element
analysis and to compare different diameter of fixtures according to the level of alveolar bone resorp-
tion.

Material and Methods. The single implant and prosthesis was modeled in accordance with the
geometric designs for the 3i implant systems. Models were processed by the software programs
HyperMesh and ANSA. Three-dimensional finite element models were developed for; (1) a reg-
ular titanium implant 3.75 mm in diameter and 13 mm in length (2) a regular titanium implant 4.0
mm in diameter and 13 mm in length (3) a wide titanium implant 5.0 mm in diameter and 13 mm
in length each with a cementation type abutment and titanium alloy screw. The abutment screws
were subjected to a tightening torque of 30 Nem. The amount of preload was hypothesized as 650
N, and round and flat type prostheses were 12 mm in diameter, 9 mm in height were loaded to 600
N. Four loading offset points (0, 2, 4, and 6 mm from the center of the implants) were evaluated. To
evaluate fixture fracture by alveolar bone resorption, we investigated the stress distribution of the
fixtures according to different alveolar bone loss levels (0, 1.5, 3.5, and 5.0 mm of alveolar bone loss).
Using these 12 models (four degrees of bone loss and three implant diameters), the effects of load-
ing offset, the effect of alveolar bone resorption and the size of fixtures were evaluated. The
PAM-CRASH 2G simulation software was used for analysis of stress. The PAM-VIEW and
HyperView programs were used for post processing.

Results. The results from our experiment are as follows:

1. Preload maintains implant-abutment joint stability within a limited offset point against occlusal

force.

2. Von Mises stress of the implant, abutment screw, abutment, and bone was decreased with in-

creasing of the implant diameter.

3. With severe advancing of alveolar bone resorption, fracture of the 3.75 and the 4.0 mm diameter

implant was possible.

4. With increasing of bending stress by loading offset, fracture of the abutment screw was pos-

sible.
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To maintain the success of an implant, biome-
chanical problems should be prevented such as
screw loosening, screw fracture, prosthesis frac-
ture, and implant fracture. Implant fracture is an
uncommon but significant complication that occurred
in 96 of 6560 implants (1.5%) followed for 3 to 15
years in nine studies.! Implant fracture is a mechan-
ical failure that seriously compromises the longevi-
ty of the treatment. Higher fracture rates were
reported for Branemark implants placed in the
maxilla and for 3.75 mm diameter implants installed
in the posterior region.** Most fractures occurred
between the third and fourth implant threads,
which corresponid to the last thread of the abutment
screw.* Implant fractures may be the result of
implant design and manufacturing defects, non-
passive fit of the prosthetic framework, or physio-
logic or biomechanical overload.*” A higher incidence
of implant fractures has been reported in fixed par-
tial dentures supported by only two implants.>**
l Bending overload was probably created by a
combination of effects from parafunctional forces,
bone resorption, posterior location of the implants,
and implant diameter. All observed fractures occurred
with commercially pure titanium 3.75 mm diame-
ter threaded implants. Prosthetic or abutment screw
loosening preceded implant fracture in the major-
ity of the implants.?*

The SEM study showed the presence of fatigue stri-
ations, which constituted the crack front under
cyclic loading. These striations were, according to
Morgan et al., the pathognomonic mark of frac-
tures resulting not from overload, where a dim-
pled surface related to plastic deformation is present,
but from fatigue failure.’*'

A specific bone loss pattern has been described as
a primary cause of implant fracture. An alternative
view is that implant fracture involves progressive fa-
tigue failure until the implant lacks adequate
strength to maintain integrit)}, culminating in a

catastrophic failure. During the progression of the frac-
ture process, an infective process may be involved in
the observed pattern of bone loss. In the former sit-
uation, bone loss is an etiologic factor for the fracture,

. while in the latter instance, it is the fracture that

causes the bone loss. At this point, it is unclear
which event precedes the other. If bone loss is a
predisposing factor, then early intervention to reduce
occlusal forces to the implant seem to be justified.
Conversely, if the initial tearing of the implant could
result in bone loss because of a secondary infection,
then occlusal adjustment would be of no value, since
the weakened implant is destined to fracture.”
Bone loss is thought to be the result from the
magnitude and/ or the direction of the load incorrectly
oriented along the long axis of the implémt.mo Peri-
implant bone resorption and implant fracture are said
to be related to excessive bending moments.**

* Coronal bone resorption produces a higher bending
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stress on the implant because of the loss of supporting
bone. In addition, this type of bone resorption usu-
ally extends to the level corresponding to the end of
the abutment screw, and in this region the resistance
to bending is diminished. An area of stress con-
centrated could be produced at the root of a thread,
resulting in crack initiation and propagation. Metal
fatigue seems to be the most common cause of
structural failure. The cracks grow from the site
of maximum stress and can produce a sudden
failure 4%

Occlusal forces {magnitude and location) are
usually the major factors that directly affect the
load transfer and stress distribution.” The me-
chanical improvement of implants and the application
of wide diameter fixtures reduce fixture fracture.
However, it is occasionally impossible to use wide
diameter fixtures, and there is uncertainty about the
relationship of critical loading offset point to the
amount of alveolar bone loss. Overload can cause
bone resorption or fatigue failure of the implant.

Sufficiently high screw joint preloads are re-



quired to maintain screw joint integrity and confer
clinical longevity to implant prosthetic compo-
nents in order to prevent such complications as
screw loosening and screw fracture ”# Griffith sug-
gested that the optimal preload for a given screw is
75% of the force required to exceed its ultimate
breaking strength. This is a totally arbitrary crite-
rion, which in no way takes into consideration
material properties or the possibility of the screw
having to resist any further external loading.”

However, it is difficult to measure prelbad in
any implant system, because of the complex nature
of the implant design. A method for the direct
measurement of preload in the oral environment has
yet to be developed. The in vitro determination of
preload has relied on strain gauges or force trans-
ducers positioned adjacent to the implant body to
measure forces within the implant complex as the
screw joint assembly is performed. Other studies have
assumed a preload value and then applied this
value to an implant system model to determine
implant biomechanical performance using finite
element analysis.®

The aim of this study was to perform three-
dimensional finite element analysis to investigate the
fracture of fixtures and to compare 3.75 mm, 4.0 mm,
and 5.0 mm diameter fixtures according to the lev-

el of alveolar bone resorption.
MATERIALS AND METHODS

The single implant and prosthesis were mod-
eled in accordance with the geometric designs for the
3i irhplant systems(3i Implant Innovations, Inc.,
Palm Beach Gardens, FL, U.S.A.). Models were
processed by the software programs HyperMesh ver-
sion 7.0(Altair Engineering, Inc., Troy, M, US.A)
and ANSA(BETA CAE Systems, version 11.2.4).
To obtain a detailed model, the threads of the implant
and the abutment screw were represented with in
their spiral characteristics. Three-dimensional fi-
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nite element models were developed for: (1) a reg-
ular titanium irnplaﬁt 3.75 mm in diameter and 13
mm in length (2) a regular titanium implant 4.0 mm
in diameter and 13 mm in length (3) a wide titani-
um implant 5.0 mm in diameter and 13 mm in
length, each with a cementation type abutment
and titanium alloy screw. In the wide implant, the
abutment and prosthesis are constructed the same
as in the regular implant for identification of load-
ing conditions. The prostheses were designed as rigid
bodies to avoid a deformative effect. The nodes
and elements are shown in table I, and the values as-
sumed for Poisson’ s ratio and Young' s modulus are
given in table IL. All materials used in the models were
considered to be isotropic, homogenous, and linearly
elastic. The bone was modeled as a cancellous core
surrounded by a 2.0 mm cortical layer. The mesial
and distal section planes were not covered by, cor-
tical bone. Boundary fixation included restraints
for all six degrees of freedom, including rotation and
translation in three coordinate axes for correspon-
dent nodes located at the most external mesial and
distal planes and the bottom. The abutment screws
were subjected to a tightening torque of 30 Nem. In
the finite element model, a nonlinear contact zone
with friction was defined between the implant,
abutment screw and abutment. According to the
study by Martin et al.*, titanium alloy abutment
screws have a preload from 434.8 + 310.6 N to
636.1 £ 336.6 N. Standardization of preload is dif-
ficult, so we employed Lisa’ s experimental value for
preload using ABAQUS(version 5.8; HKS Inc,
Pawtucket, RI). When the friction coefficient is 0.12,
the preload value of Unigrip and TorqueTite screws
is approximately 650 N at 30 Nem.” For real stress
distribution in the preload, we rotated the abutment
screw without contact conditions and then applied
a contact condition for preload stress distribution.
Maximum bite force for the cyclic fatigue fracture of
implant was estimated at 600 N, which is 55% of the
yield strength of titanium alloy abutment screw. The



fatigue strength is roughly equivalent to 50 % of the
tensile strength. Maximum bite force is generated
when ipsilateral chewing of food causes mean max-
imum forces in centric occlusion and chewing and
grinding.* For the removal of eccentric contact,
the occlusal table was a flat type and was simplified

Table I. The elements and nodes

for the evaluation of changes in loading offset
alone. A bending moment was generated by alter-
ing the loading offset by 0, 2, 4 or 6 mm. The
amount of preload was hypothesized as being ap-
proxima- tely 650 N and 12 mm diameter, 9 mm high
round and flat type prosthesis were loaded to 600

Model Name Crown Abutment Abutment screw Implant Cortical bone Trabecular bone TOTAL
Cortical
Implant depth node  element node  element node  element  node clement  node element node element node  element
375mm 0 21463 99026 7125 4711 192 130154 77303 309852
: 15 2131 98113 7440 16202 31582 120191 75292 234506
diameter
implant 35 21481 99048 7504 16568 27570 104000 72169 219616
50 214 98869 7612 16264 24570 91806 2
6289 5472 5472 4128 11334 56361 % 86 6558 065
40mm 0 22964 107715 7083 14434 29091 100383 73660 222582,
,. 15 22836 106989 7238 15020 26921 93079 71935 215088
diameter
implant 35 2915 107369 7242 15014 24106 83784 69873 206167
50 2970 107680 7248 15081 2142 77606 68470 200367
5.0mm 0 27817 136313 6419 10902 25644 81124 74639 228339
] 1. 2 137 1291 20714 749% 73420 2371
diameter > 7968 6912 7776 6336 11384 56361 5003 37a4 &
implant 35 27856 136545 6494 11201 21174 67084 71320 214830
50 27856 136570 6521 11361 19241 61010 69894 208941
Table II. Young' s modulus and Poisson’ s ratio
Bulk modulus Shear modulus Young' s modulus Poisson’ s
(GPa) (GPa) (GPa) ratio
Titanium 87.50 40.38 105.0 0.30
Cortical bone 11.67 5.38 14.0 0.30
Trabecular bone 5.0 0.52 15 045
a)

Fig. 1. a) finite element model; b) 0 mm of bone loss; ¢) 1.5 mm of bone loss; d) 3.5 mm of bone loss; e} 5.0 mm

of bone loss.
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N(Fig. 1). In three-dimensional models, stress is
generally represented by a stress tensor, which has
six components. The von Mises equivalent stress
(which expresses all these components in one value)
was computed for the length and diameter variations
mentioned above using PAM-CRASH 2G (ESI
Group, version 2004, France). To investigate the
effect of the preload, we compared the stress mod-
el A (3.75 mm diameter implant, 0 mm of bone
loss with preload) to the stress model B(3.75 mm di-
ameter implant, 0 mm of bone loss without preload).

To evaluate fixture fracture by alveolar bone re-
sorption, the fixtures were investigated according to
the degree of alveolar bone loss. Bone loss was
classified as 0, 1.5, 3.5, or 5.0 mm. The 0 mm and 5
mm distances were controls, while the clinically
important distance between the platform and the
first thread is 1.5 mm, and the distance between the
third and fourth threads, where the end of the
abutment screw is postulated to be, is 3.5 mm. The
bone was modeled as a cancellous bone surround-
ed by a 2 mm layer of cortical bone. Using these 12
models (four degrees of bone loss and three implant
diameters), the effects of the loading offset, the ex-
tent of alveolar bone resorption, and the size of
the fixture was evaluated. The PAM-CRASH 2G sim-

ulation software was used for analysis of stress.

The PAM-VIEW(ESI Group, version 2004, France)
and HyperView programs (Altair Engineering,
Inc,, Troy, MI, USA) were used for post processing.
The fracture of the abutment screw and implant is
determined by von Mises stress patterns consider-
ing the S-N curve and yield strength of commerdially
pure titanium and titanium alloys. A tensile strength
of commercially pure titanium is ranging from 275
to 590 MPa, and a yield strength of 170 to 485 MPa,
which strength is controlled primarily through the
content of oxygen and iron content. The higher the
oxygen and iron content, the higher the strength.
Titanium alloys have a tensile strength of 860 MPa,
and a yield strength of 795 MPa.**®
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RESULTS

When a 3.75 mm diameter implant with 0 mm of
bone loss, a fracture of the abutment screw is pos-
sible starting from a 4 mm offset(Fig. 2).

When a 3.75 mm diameter implant has 1.5 mm of
bone loss, a fracture of the abutment screw is pos-
sible from a 4 mm offset, and a fracture of the im-
plant is possible from a 6 mm offset(Fig. 3).

When a 3.75 mm diameter implant has 3.5 mm of
bone loss, the fracture of abutment screw and implant
is possible from a 4 mm offset(Fig. 4).

When a 3.75 mm diameter implant with 5.0 mm
of bone loss, a fracture of abutment screw and im-
plant is possible from 4 mm offset(Fig. 5). The
amount of stress concentrated in the implant increases
with alveolar bone resorption(Figures 2 to 5).

When a 4.0 mm diameter implant has 0 mm of
bone loss, a fracture of the abutment screw is pos-
sible from a 4 mm offset(Fig. 6).

When a 4.0 mm diameter implant has 1.5 mm of
bone loss, a fracture of the abutment screw is pos-
sible from a 4 mm offset(Fig. 7).

When a 4.0 mm diameter implant has 3.5 mm of
bone loss, fractures of abutment screw and im-
plant are possible from a 4 mm offset(Fig. 8).

When a 4.0 mm diameter implant has 5.0 mm of
bone loss, fractures of abutment screw and im-
plant are possible from a 4mm offset(Fig. 9).

When a 5.0 mm diameter implant has 0 mm of
bone loss, a fracture of the abutment screw is pos-
sible from a 4 mm offset(Fig. 10).

When a 5.0 mm diameter implant has 1.5 mm of
bone loss, a fracture of abutment screw is possible
from a 6 mm offset{Fig. 11).

When a 5.0 mm diameter implant has 3.5 mm of
bone loss, a fracture of the abutment screw is pos-
sible from a 6 mm offset(Fig. 12).

When a 5.0 mm diameter implant has 5.0 mm of
bone loss, a fracture of the abutment screw is pos-
sible from a 6 mm offset(Fig. 13). In a 5.0 mm diameter



Hi
i

I

1323855

H

< ] O = et gg

™
7
1

I

a) b) V ) d) ' é)

Fig. 2. The 3.75 mm diameter implant with 0 mm of bone loss : a) stress distribution after preload; b) 600 N load-
ing at the center of prosthesis; ¢) 2 mm offset loading; d) 4 mm offset loading; ) 6 mm offset loading.
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Fig. 3. The 3.75 mm diameter implant, 1.5 mm of bone loss: a) stress distribution after preload; b) 600 N loading
at the center of prosthesis; ¢) 2 mm offset loading; d) 4 mm offset loading; e) 6 mm offset loading.
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Fig. 4. The 3.75 mm diameter implant, 3.5 mm of bone loss: a) stress distribution after preload; b) 600 N loading
at the center of prosthesis; c) 2 mm offset loading; d) 4 mm offset loading; ) 6 mm offset loading.
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Fig. 5. The 3.75 mm diameter implant with 5.0 mm of bone loss: a) stress distribution after preload; b) 600 N load-
ing at the center of prosthesis; c) 2 mm offset loading; d) 4 mm offset loading; ) 6 mm offset loading.
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Fig. 6. The 4.0 mm diameter implant with 0 mm of bone loss: a) stress distribution after preload; b) 600 N
loading at the center of prosthesis; ¢) 2 mm offset loading; d) 4 mm offset loading; e) 6 mm offset loading,.
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Fig. 7. The 4.0 mm diameter implant, 1.5 mm of bone loss: a) stress distribution after preload; b) 600 N loading at
the center of prosthesis; ¢) 2 mm offset loading; d) 4 mm offset loading; e) 6 mm offset loading.
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Fig, 8. The 4.0 mm diameter implant with 3.5 mm of bone loss: a) stress distribution after preload; b) 600 N load-
ing at the center of prosthesis; ¢) 2 mm offset loading; d) 4 mm offset loading; e) 6 mm offset loading.
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Fig. 9. The 4.0 mm diameter implant with 5.0 mm of bone loss: a) stress distribution after preload; b) 600 N load-
ing at the center of prosthesis; ¢} 2 mm offset loading; d) 4 mm offset loading; e) 6 mm offset loading.
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Fig. 10. The 5.0 mm diameter implant with 0 mm of bone loss: a) stress distribution after preload; b) 600 N load-
ing at the center of prosthesis; c) 2 mm offset loading; d) 4 mm offset loading; ) 6 mm offset loading.
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Fig. 11. The 5.0 mm diameter implant with 1.5 mm bone loss: a) stress distribution after preload; b) 600 N
loading at the center of prosthesis; ¢) 2 mm offset loading; d) 4 mm offset loading; ) 6 mm offset loading.
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Fig. 12. The 5.0 mm diameter implant with 3.5 mm of bone loss: a) stress distribution after preload; b) 600 N load-
ing at the center of prosthesis; c) 2 mm offset loading; d) 4 mm offset loading; e) 6 mm offset loading.

£38
EH

-
Fo Fins
e el
b

u i

a) b) c) d) e)
Fig. 13. The 5.0 mm diameter implant with 5.0 mm of bone loss: a) stress distribution after preload; b) 600 N load-
ing at the center of prosthesis; ¢) 2 mm offset loading; d) 4 mm offset loading; e) 6 mm offset loading.
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implant with bone loss of 0 mm, a fracture of abut-
ment screw is possible from 4 mm offset, but when
bone loss is 1.5, 3,5, or 5.0 mm, an abutment screw
fracture is possible from a 6 mm offset. The fracture
of a 5.0 mm diameter implant is impossible(Figures
10 to 13).

1. Effects of preload on von Mises stress (stress
model A versus B)

With the application of preload, the von Mises
stress is maintained until an offset of 2 mm, but the
stress is increased over a loading offset of 2 mm.
Without preload, the von Mises stress increases
with the amount of loading offset. However the

stress patterns are similar to each other in the

bone(Figures 14 to 17).
2. Effects of bone loss on implant stress

Without bone loss, the stress patterns are similar
amonyg the implants, but with the progression of bone
loss, the 3.75 mm diameter implant showed the
highest von Mises stress and the 5.0 mm diameter
implant showed the least stress. The von Mises
stress of the 4.0 mm diameter implant was similar
to that of the 5.0 mm diameter implant at 1.5 mm of

Implant

|oPreload | o
- No preload

Von Mises stress[Gpal

initial omm

loading offset

bone loss. However, while the stress pattern of 4.0
mm diameter implant is parallel to that of 3.75
mm diameter implant with progression of bone
loss, the stress is less than 3.75 mm diameter implant.
In general, the von Mises stress is increases with load-
ing offset, and the amount increases faster above an
offset of 2 mm(Figures 18 to 21).

3. Effects of bone loss on abutment screw stress

Without bone loss, the stress pattern of the abut-
ment screw is similar among the implants. The
von Mises stress of the abutment screw decreases
slightly with a loading offset of less than 2 mm. The
stress increases faster with a loading offset of over
2 mm. The 5.0 mm diameter implant has the least
stress, and the 4.0 mm diameter implant is similar
to 5.0 mm diameter implant at 1.5 mm of bone
loss, but the stress pattern is parallel to that of 3.75
mm diameter implant with progression of bone

loss(Figures 22 to 25).
4, Effects of bone loss on abutment stress
The von Mises stress of the abutment increases

steeply for a loading offset of over 2 mm in all im-
plants. The stress patterns are more similar among

Abutment screw

—-o-preload
-2~ No preload

Von Mises stress[GPal

initial 2mm 4mm

Loading offset

Oomm amm

Fig. 14. Von Mises stress of implant with and without
preload.
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Fig. 15. Von Mises stress of abutment screw with and
without preload.
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0.00

2mm 4mm

loading offset

initial

Omm

Fig. 16. Von Mises stress of abutment with and with-
out preload.

Fig. 17. Von Mises stress of bone with and without pre-
load.
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Fig. 18. Von Mises stress of implants with no bone loss.

Fig. 19. Von Mises stress of implants at 1.5 mm of

Fig. 20. Von Mises stress of implants at 3.5 mm of
bone loss.
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bone loss.
Bone loss 3.5 mm implant Bone loss 5.0 mm implant
3.0
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Fig. 21. Von Mises stress of implants at 5.0 mm of
bone loss.
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Fig. 22. Von Mises stress of abutment screw at 0 mm of
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Fig. 23. Von Mises stress of abutment screw at 1.5

bone loss. mm of bone loss.
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Fig. 24. Von Mises stress of abutment screw at 3.5

mm of bone loss.
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Fig. 26. Von Mises stress of abutment at 0 mm of

bone loss.

Fig. 25. Von Mises stress of abutment screw at 5.0

mm of bone loss.
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Fig. 27. Von Mises stress of abutment at 1.5 mm of bone

loss.
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Fig. 28. Von Mises stress of abutment at 3.5 mm of bone
loss.

Fig. 29. Von Mises stress of abutment at 5.0 mm of bone
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Fig. 33. Von Mises stress of bone at 5.0 mm of bone loss.



the abutments of the three implant types than
among other components(Figures 26 to 29).

5. Effects of bone loss on bone stress

The bone of the 5.0 mm diameter implants has the
least von Mises stress, and the stress increases with
loading offset. The bone of the 4.0 mm diameter im-
plant have stress levels between those of the 3.75 mm
and 5.0 mm diameter implants at 1.5 mm of bone loss,
but the bone stress levels of the 4.0 mm diameter im-
plants are similar to those of 3.75 mm diameter
implants at 3.5 mm of bone loss(Figures 30 to 33).

DISCUSSION

1. Fatigue

Commerdially pure titanium, classes 1 to 4, has ten-
sile strengths ranging from 275 to 590 MPa, with yield
strengths ranging from 170 to 485 MPa. Titanium al-
loys have a tensile strength of 860 MPa and a yield
strength of 795 MPa.® The most intensive stress is
concentrated at the abutment screw, the fixtures have
the next lower level of stress, and the abutment
has the least stress of the implant components.
Clinically, abutment screws are made of titanium al-
loy or gold alloy. The abutment is made of grade IIl
commercially pure titanium. In contrast, fixture
requires a better biological response for osseointe-
gration, so the Branemark fixture was made of
grade I commercially pure titanium. However,
grade I titanium has a lower strength(tensile strength
275 MPa, yield strength 170 MPa) than titnaium
grades III or IV, and the incidence of fracture is
higher for grade I titanium. An additional alter-
native is to use a different implant material to pro-
vide a higher threshold for fatigue failure, since
fatigue appears to have some relationship with the
tensile strength of the implant materials. We tested
a grade IV titanium implant (tensile strength 590 MPa,
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yield strength 485 MPa). The mechanical weak-
ness of implant systems is a problem in clinical
situations. Increased knowledge of the mechani-
cal properties of implant systems is therefore essential.

To determine the exact timing of fractures of the
implant and abutment screw, specific S-N curve
experiments for the implant and abutment screw are
needed for notch design. Metallurgical concentrators,
such as superficial defects and notches, poor surface
polishing, inclusions, and porosity are particularly
dangerous, and can lead to catastrophic failure
and a reduced number of cycles.*

We found a peak von Mises stress that is higher
than the tensile strength of titanium. However,
this value is restricted to a small notch area of the im-
plant and abutment screw. Torsional relaxation of
the screw shaft, embedment relaxation, and localized
plastic deformation of the gold alloy and the opposing
titanium threads were the most likely explanations
for the exclusion of this peak von Mises stress.®

Commercially pure titanium has a tensile strength
ranging from 275 to 590 MPa, and this strength is con-
trolled primarily by the oxygen and iron contents.
The higher the oxygen and iron contents are, the high-
er the strength. The fatigue strength (107 cycles) is
roughly equivalent to 50% of the tensile strength. The
fracture toughness of titanium alloys ranges from 28
to 108 MPa.m'”, and is in negatively correlated
with tensile yield strength.

Fatigue is the progressive, localized, and per-
manent structural change that occurs in a material
subjected to repeated, or fluctuating, strains at
nominal stresses with maximum values less than the
static yield strength of the material. Fatigue may cul-
minate into cracks and cause fractures after a sufficient
number of cycles. Fatigue damage is caused by the
simultaneous actions of cyclic stress, tensile stress,
and plastic strain. The plastic strain resulting from
cyclic stress initiates the crack, and the tensile stress
promotes crack growth (propagation). Although
compressive stresses will not cause fatigue, com-



pressive loads can result in local tensile stresses, and
a fatigue crack may form even in a flow-free metal
having a highly polished surface with no stress
and no stress concentrators. One study reported
shear cracks that initiated at the root of the thread
and propagated into the inner section of the screw.*

2. Preload

An implant abutment is joined to the implant
by an abutment screw. When the screw is_tightened,
a tightening torque is applied as a moment to the head
of the abutment screw. The applied moment is
transformed along the interface of the abutment
screw thread surfaces and the implant threaded bore
surfaces. The transformed force then induces a
contact force in the interface between the abut-
ment and the implant bearing surfaces that are be-
ing clamped together. This contact force clamping
together the abutment and the implant is called
the preload. As the tightening torque is increased
above the level of the initial contact force, the pre-
load stress in the abutment/implant interface is
increased to a point. This point is within the mate-
rial elastic range of the abutment screw. When the
optimum preload is achieved, the abutment screw
experiences the entire external load applied to the
clamped parts. At this point, the screw joint is said
to be protected against external force applications as
long as these external loads do not exceed the pre-
load. Thus, the accuracy of the preload reached
during screw tightening and the clamping of the abut-
ment and the implant together become a major
and critical subject for studying the dynamic load-
ing of the implant complex.?

Preload maintains implant-abutment joint sta-
bility within a limited offset point against occlusal
force. Without preload, the joint stability can not be
maintained. Bickford divided the process of loosening
into two phases. The first involves the slippage of the
joint surfaces, which is related to the application of
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transverse and axial forces that are sufficiently
large to overcome the frictional and compressive
forces that keep the contracting surfaces in a fixed
relationship. The second phase occurs when the
preload is reduced to such an extent that external
forces and vibrations cause the mating threads to back
off. Once this stage has been reached, the screw joint
ceases to function and the clamped surfaces separate.
In this state the screw is liable to be loaded in flex-
ion and may fracture.”

The preload value could be acquired by ABAQUS,
but there is no three-dimensional finite element
analysis of the stress distribution of an implant
with the application of preload. Preload maintains
the stability of the implant components up to a
loading offset of 2 mm when 600 N of biting force are
applied. Without preload, stress is increased with
loading offset. A loading offset beyond the effect of
the preload will make the outbreak of many prob-
lems possible(Figures 14 to 17).

For the most part, finite element studies that
have analyzed implant systems for stress devel-
opment, magnitude, and displacement have not
directly measured the development of the preload.
This is most likely due to the difficulty in accu-
rately creating a three-dimensional model of the im-
plant complex with the exact dimensions of the
thread helix for the abutment screw and screw
bore® With such a model, the preload generated by
a torque application can be simulated. However, cre-
ating such a model is a difficult task and requires ex-
pertise in modeling and in finite element analysis.
In the assembly of a screw joint, it is important to
know the optimum preload that will maintain the
components together. However, Lisa' s experiment
using ABAQUS cannot rotate real screws, but on-
ly estimates the relationship between torque and pre-
load® In our experiments, we rotated the abutment
screw without contact conditions, and applied the
contact conditions for the stress distribution by pre-
load.



In the external hex implant design, the abutment
screw alone is primarily responsible for maintain-
ing the implant abutment complex assembly under
functional loads. Therefore, the axial preload of
the abutment screw is a determining factor for the
stability of the connection. The mechanical effect of
the preload in implant-abutment complex was con-
sidered.»#®

In practice, the achievable preload is limited by the
superpositioning of additional tension related to the
external loading. For instance, Haack et al.®, in an in
vitro mechanical test, measured abutment screw elon-
gation to determine preload during abutment/im-
plant joint assembly. The abutment screw was mea-
sured before screw tightening and after preload
development. The elongation of the screws after ap-
plying the manufacturer’ s recommended tighten-
ing torques was within the elastics range. The induced
stresses were 57.5% and 56% of the yield strengths
for gold alloy and titanium, respeéﬁvely. For the tight-
ening of screws beyond the manufacturer’ s rec-
ommended torques, the mean preload was 486.2(+

57.9) N using gold alloy screws and 381.5(+ 72.9) N

with titanium screws.
3. Maximum biting force

Maximum bite force is generated when ipsilateral
chewing of food causes mean maximum forces in cen-
tric occlusion and chewing and grinding. The force
created by ipsilateral chewing will cause a bending
moment due to axial force.® The stress generated
when there is no bone loss is the least, and the
area of stress in the implant components is in-
creased with bone loss. However, the increase of von
Mises stress is not coincident with bone loss. We hy-
pothesize that the axial force with loading offset caus-
es a bending moment without oblique loading.
This can apply bending and compressive forces to
the bone and implant components. When oblique
force is applied in chewing and grinding, the bone
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and implant components are exposed to shear and
bending forces. In the fracture of an implant, the worst
condition hypothesized is the combination of a
hard food bite and axial loading with offset without
oblique force. In a clinical situation, occlusal contact
points are combined with each other, and the worst
condition of loading offset is smaller than the expected
value.

4, Fixture diameter

The 4.0 mm diameter fixture may substitute 3.75
mm diameter fixture in the prevention of implant frac-
ture, but it is not as effective as 5.0 mm diameter fix-
ture. Decreasing the loading offset by reducing of oc-
clusal table size may be essential for avoiding fix-
ture fracture.

ﬁnplant size influences the area of possible retention
in the bone; factors such as occlusion, masticatory
force, the number of implants, and the implant po-
sition within the prosthesis affects the forces on
the bone adjacent to the implants.®

An increase in the implant diameter decrea- sed
the maximum von Mises equivalent stress around
the implant neck more than an increase in the implant
length, by resulting in a more favorable distribution
of the simulated masticatory forces. Holmgren®
reported that implant diameter, shape, and load
direction influence stress distribution. Alveolar
bone reduction caused by extraction wound heal-
ing, the wearing of removable dentures, and bone
injuries, together with anatomic structures (such as
the canine fossa, antrum, nasal cavity or mandibu-
lar canal), may limit implant size or require im-
plant placement into positions for which angled
abutments are needed. Thus, such implants may be
unable to distribute the masticatory forces effectively*

The effects of fixture diameter showed that 5.0 mm
diameter implant is advantageous. Large implant di-
ameters provide for more favorable stress distrib-
utions. Finite element analysis has been used to



show that stresses in cortical bone decrease in inverse
proportion to an increase in implant diameter with
both vertical and bending loads. Hence, in order to
reduce the risk of implant fractures, it is reco-
mmended that the diameter of the implant be in-
creased or the diameter of the abutment screw be de-
creased. However, Holmgren et al. showed that
using the widest diameter implant is not neces-
sarily the best choice when considering stress dis-
tribution to surrounding bone; within certain mor-
phologic limits, an optimum dental implant size ex-
ists for decreasing the stress magnitudes at the
bone implant interface.*#

5. Cortical bone loss

Postulated boundary conditions restrain six degrees
of freedom, involving rotation and translation in three
coordinate axes for correspondent nodes located at
the most external mesial and distal planes and bot-
tom. We postulate boundary conditions for modeling
at small area, but the stress pattern is different be-
tween the maxilla and mandible. A maxillary implant
is fixed to the cranium, but a mandibular implant is
located at a mobile position with the temporo-
mandibular joint, and its stress pattern differs from
the maxillary implant. The full arch modeling may
be necessary for correct clinical data.

A higher predisposition of the maxilla for im-
plant fracture could be related to the fact that the pres-
ence of a weaker bone can lead to bone loss at high
loads and an increased bending moment on the
implants.> With the progression of alveolar bone loss,
the stress area of the implant increases, and the
tendency to fracture also increases.

On the basis of clinical observations, some authors
state that during the first year after implant loading,
the marginal bone loss around the neck ranges
from approximately 0.5 to 1 mm or 1.5 mm.
Subsequently, the rate of bone loss is either considered
to be stationary or significantly reduced (bone loss
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of approximately 0.1 mm), or else the resorption of
the bone crest continues and the implant is ultimately
lost.””® These findings are in accordance with recent
three dimensional mathematical models of dental im-
plants under non-axisymmetric loading, indicat-
ing the maximum stress occurred around the implant
neck.*#

The manner in which bone is loaded may be es-
sential to its response. Bone is usually subjected
to cyclic loads, with results that differ from static loads.
If a sufficient number of repetitive load cycles are ap-
plied, stress microfractures in the bone may occur.
After bone microfractures occur, the microdam-
age caused by stresses greater than normal levels may
stimulate osteoclastic activity to remove the damaged
bone.* The highest stresses were concentrated in the
cortical bone. Stresses under oblique loading were
approximately 10 times greater than under axial load-
ing. The type of veneering material and the size of
the mandible had no effect on the stress levels un-
der similar loading conditions. The ultimate strength
of human cortical bone ranges from 72 to 76 MPa in
tension and from 140 to 170 MPa in compression.”

We postulate alveolar bone resorption with con-
stant cortical bone thickness.

In the resorption models, the bone defects were
lined by a cortical shell to simulate an increase in bone
density (lamina dura radiographically observed in
clinically stable implants with bone resorption).**
The tendency of most coronal bone to undergo re-
modeling adjacent to implants and to form a new cor-
tical bone layer at a lower level was also found in a
dog study.® In the pure vertical resorption models,
stresses of the cortical and cancellous bone in-
creased with resorption depth. In contrast, in the con-
ical resorption models, the stress of the cortical
bone was lower than in the non-resorption and
corresponding pure vertical resorption models for
all resorption depths. Thus, slight conical resorption
may partially be the result of biomechanical adap-
tation of bone to occlusal loads in the successtully in-



tegrated implants.* Since the cortical bone had a much
higher elastic modulus than the cancellous bone, it
was the load-carrying member for all cancellous bone
quantities, regardless of load direction.®

Van Qosterwyck et al.® carried out a finite element
analysis of an axially loaded Branemark implant, in
which the peak von Mises stress appeared at the point
on the thread where the lower flank passed into the
curved top, when the bone implant interface was as-
sumed to resist only compressive stress. Clearly, with
a very stiff implant, the stresses in the bone will be
the same irrespective of whether the interface to the
superstructure is located at the level of the marginal
bone or more coronally.

That mechanical stimuli affect the architecture of
bone has garnered wide acceptance.™ Strains ex-
ceeding the physiologic tolerance threshold of bone
(above 3000 microepsilons) may explain why bone
loss is observed at the tip of threads in histological
analyses of implants.®* High marginal bone loss
around conical Branemark implants has been at-
tributed to the smooth implant neck, avoiding the
generation of optimum stresses and strain in the vicin-
ity of the implant.” The occurrence of marginal bone
loss is often attributed to poor oral hygiene and
biomechanical factors. Clinical studies have shown
that bone loss around the implants that may have led
to implant failure were associated in many cases with
unfavorable loading conditions. Inappropriate load-
ing causes excessive stress in the bone around the im-
plant, and may results in bone resorption.®*

The load transfer from implants to the sur-
rounding bone depends on the type of loading,
the bone-implant interface, the length and diameter
of the implants, the shape and characteristics of
the implant surface, the prosthesis type, and the quan-
tity and quality of the surrounding bone.*

Because bending stress is increased by alveolar bone
resorption, implant fracture is possible with alveolar
bone resorption. But fracture of the 5.0 mm diameter
implant is impossible with limited bite force of our
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study, it is a viable option to overcome implant
fracture by altering implant diameter.

CONCLUSIONS

The fracture of 3.75 and 4.0 mm diameter implants
is possible, according to finite element analysis, so
the control of bone loss and loading offset by the oc-
clusal table of the prosthesis should be considered.
The conclusions from our experiment were as follows:
1. Preload maintains implant abutment joint stability

within a limited offset point against occlusal
force.

2. Von Mises stress of the implant, abutment screw,
abutment, and bone was decreased with in-
creasing of the implant diameter.

3. With severe advancing of alveolar bone resorp-
tion, fracture of the 3.75 and the 4.0 mm diame-
ter implant was possible.

4. With increasing of bending stress by loading
offset, fracture of the abutment screw was possible.
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