• Title/Summary/Keyword: Precision Rotor

Search Result 271, Processing Time 0.024 seconds

An Automated Process Planning System for Blanking of Stator and Rotor Parts and Irregularly-Shaped Sheet Metal Products (스테이터와 로터 및 불규칙한 박판제품의 블랭킹에 관한 공정설계 시스템)

  • Park, J.C.;Kim, B.M.;Kim, J.H.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.46-53
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing for stator and rotor parts and irregularly shaped sheet metal by press. An approach to the system is based on knowledge based rules. The process planning system by considering a blank layout for nesting of irregularly shaped sheet metal and an improved strip layout for stator and rotor parts and irregularly shaped sheet metal is implemented. Using this system, design parameters(utilization ratio, slitting width, pitch, working order, die blank shapes) are determined and output is generated in graphic forms. Knowledges for blank layout and strip layout are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blanking companies. The implemented system provides powerful capabilities for process planning of stator and rotor parts and irregularly shaped sheet metal.

  • PDF

An Automated Process Planning and Die Design System for Blanking of Stator and Rotor Parts (스테이터 및 로터의 블랭킹에 관한 공정설계 및 금형설계 시스템)

  • Park, J.C.;Kim, M.M.;Lee, S.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.40-51
    • /
    • 1996
  • This paper describes some research works of computer-aided design of blanking and piercing progressive die for stator and rotor parts. An approach to the system is based on knowledge based rules. The deveolped system is composed of six modules such as main program, input and shape treatment, production feasibility check, strip layout, die layout and drawing edit module. Using this system, design parameters ( geometric shapes, die and punch dimensions and dimensions of tool elements) are determined and output is gen- erated in graphic from. Knowledges for tool design are extracted from the plasticity theories, handbooks, relevant references and empirical know-hows of experts in blkanking companies. The developed system provides powerful capabilities for process planning and die design of stator and rotor parts.

  • PDF

Stress and Modal Analysis for the Rotor System of a Medical Centrifuge using Finite Element Method (유한요소법을 이용한 의료용 원심분리기 로터의 응력 및 고유치 해석)

  • Kim, Sung-Min;Yang, In-Chul;Kim, Do-Gyoon;Kim, Hak-Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.6
    • /
    • pp.78-85
    • /
    • 2007
  • In this study, we performed finite element analysis for the design of a medical centrifuge and two-types of centrifuge were compared with each other. The types of centrifuge are 2-arm straight type and 3-arm type. Structural analysis was done with respect to the change of the rotational speed of the rotor of a centrifuge. When the rotor of centrifuge was rotated, the von Mises stress of 2-arm straight type-rotor was compared with the von Mises stress of 3-arm type. The margin of safety was estimated from the result. We found the critical speed of centrifuge from the campbell diagram by modal analysis.

A study on the Modeling for Rotors Control with Dynamics Analysis S/W (동역학 S/W와 연계한 회전체 제어의 모델링에 관한 연구)

  • Lee W.C.;Kim S.W.;Kim J.S.;Park H.O.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.906-909
    • /
    • 2005
  • This study provides the method to build the rotor system model using dynamic analysis software. also, it introduces the traditional methods of the rotor system modeling and informs the each merits and demerits. We will make up the flexible system of rotor system model with ADAMS, multi-body dynamics S/W, in order to develop dynamics model and get the response of plant model near to real model through connection the SIMULINK of MATLAB. We will develop the computing dynamics-controling model possible controlled simulation similar to a real model with controlling the plant model.

  • PDF

An efficient method for computation of unbalance responses of rotor-bearing systems (회전체 베어링계의 불균형 응답을 위한 효율적인 계산 방법)

  • Hong, Seong-Wook;Park, Jong-Heuck
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.9
    • /
    • pp.137-147
    • /
    • 1995
  • The unbalance response analysis is one of the essential area in the forced vibration analysis of rotor-bearing systems. Local bearing parameters in rotor-bearing systems are the major sources which give rise to a difficulty in unbalance response computation due to the complicated dynamic properties such as rotational speed dependency and anisotropy. In the present paper, an efficient method for unbalance responses is proposed so as to easily take into account bearing parameters in computation. An exact matrix condensation procedure is proposed which enables the present method to compute unbalance responses by dealing with condensed, small matrices. The proposed method causes no errors even though the computation procedure is based on the small matrices condensed from the full matrices. The present method is illustrated through a numerical example and compared with the conventional method.

  • PDF

Stiffness Modeling of Toroidally-Wound BLDC Machine (환형권선 BLDC 전동기의 강성계수 모델링)

  • Lee, Hyun-Chu;Yoo, Seong-Yeol;Noh, Myoung-Gyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.3
    • /
    • pp.40-46
    • /
    • 2009
  • Toroidally-wound brushless direct-current (BLOC) machines are compact, highly efficient, and can work across a large magnetic gap. For these reasons, they have been used in pumps, flywheel energy storage systems and left ventricular assist devices among others. The common feature of these systems is a spinning rotor supported by a set of (either mechanical or magnetic) bearings. From the view point of dynamics, it is desirable to increase the first critical speed of the rotor so that it can run at a higher operating speed. The first critical speed of the rotor is determined by the radial stiffnesses of the bearings and the rotor mass. The motor also affects the first critical speed if the rotor is displaced from the rotating center. In this paper, we analytically derive the flux density distribution in a toroidally-wound BLOC machine and also derive the negative stiffness of the motor, based on the assumption that the rotor displacement perturbs the flux density distribution linearly. The estimated negative stiffness is validated by finite element analyses.

A Study on the Identification and Robust Control of Flexible Rotor Supported by Magnetic Bearing (자기베어링으로 지지되는 연성축계의 식별 및 강인 제어에 관한 연구)

  • Ahn, H. J.;Jeon, S.;Han, D. C.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.3-6
    • /
    • 2000
  • The magnetic bearing system are intrinsically unstable, and need the feedback control of electromagnetic forces with measured displacements. So the controller design plays an important role in constructing high performance magnetic bearing system. In case of magnetic bearing system, the order of identified model is high because of unknown dynamics included in closed loop systems - such as sensor dynamics, actuator dynamics - and non-linearity of magnetic bearings itself. In this paper the identification and robust control of flexible rotor supported by magnetic bearing are discussed. We measure and identify overall system that contains not only flexible rotor model but also magnetic bearing and time delay. The structured and unstructured uncertainties are modeled that cover variations of natural frequencies, uncertainties in sensor and actuator gains and unmodeled dynamics. And desired performances are specified with several weighting function. Using augmented system that includes identified model, uncertainties, and weighting functions, μ-synthesis is applied to flexible rotor supported with magnetic bearing. The flexible rotor was spin up over the first flexible critical speed.

  • PDF

Adaptive Wavelet Analysis of Non-Stationary Vibration Signal in Rotor Dynamics

  • Ji Guoyi;Park Dong-Keun;Chung Won-Jee;Lee Choon-Man
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.26-30
    • /
    • 2005
  • A rotor run-up or run-down process provide more useful information for modal analysis than normal operation conditions. A traditional difficulty associated with rotor run-up or run-down analysis is the non-stationary nature of vibration data. This paper compares Short-Time Fourier Transform (STFT) and the wavelets analysis in these non-stationary signal analyses. An Adaptive Wavelet Analysis (AWT) is proposed to analyze these signals. Although simulations and experiments in a simple rotor-bearing system show that both STFT and AWT can be used to analyze non-stationary vibration signals in rotor dynamics, proposed AWT provides better results than STFT analysis. From the amplitude-frequency curve obtained by AWT, the modal frequency and damping ratio are calculated. This paper also analyzes the characteristics of signals when the shaft touches the outer hoop in a run-up process. The AWT can give a good result in this complex dynamic analysis of the touching process.

Design and Construction of a Quad Tilt-Rotor UAV using Servo Motor

  • Jin, Jae-Woo;Miwa, Masafumi;Shim, Joon-Hwan
    • Journal of Engineering Education Research
    • /
    • v.17 no.5
    • /
    • pp.17-22
    • /
    • 2014
  • Unmanned aerial vehicles (UAVs) that have been recently commercialized can largely be divided into fixed-wing aircraft and rotor aircraft by their styles and flight characteristics. Although the fixed-wing aircraft represents higher power efficiency, higher speed, longer flight distance and larger loading weight than the rotor aircraft, they have a disadvantage of requiring a space for take-off and landing. On the other hand, the rotor aircraft can implement vertical take-off and landing (VTOL) and represents various flight modes (hovering, steep bank turns and low-speed flights). But they require both precision take-off control and attitude control. In this study, we used a quad-tilt rotor UAV to combine advantages in both the fixed-wing aircraft and the rotor aircraft. The quad-tilt rotor (QTR) system was designed and constructed by adding a tilt device with a servo motor to a general quad-rotor vehicle.

Dynamic Behavior Analysis of an Eccentric Rotor with Unbalanced Magnetic Forces in BLDC Motors (BLDC 전동기의 전자기적 불평형력을 고려한 편심 회전자의 동적 거동 해석)

  • Kim, Tae-Jong;Hwang, Sang-Mun;Park, No-Gil
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.11
    • /
    • pp.604-610
    • /
    • 1999
  • Vibration of a rotor-bearing system driven by an electric motor is a coupled phenomenon between mechanical characteristics and magnetic origins through the air-gap. With the advent of new high-energy magnets together with high precision motor applications, magnetic sources of vibration are becoming more serious. This paper investigates the transient whirl responses of a rotor system with purely mechanical origins and compares it with that of magnetically coupled origins. A perturbation method is applied to model the magnetic field associated with rotor eccentricity. Electromagnetic forces are obtained by the Maxwell stress method, which utilizes the analytical expression of radial flux density distribution. The FEM was applied to a rotor-motor system to illustrate magnetically coupled effects in rotor dynamics. Results show that magnetically coupled sources significantly affect the vibration of the rotor-motor system.

  • PDF