• 제목/요약/키워드: Power system analysis

검색결과 9,420건 처리시간 0.041초

선박용 발전기 동기화시의 과도현상 해석에 관한 연구 (A Study on the Transient Phenomenon Analysis of Ship Generator Synchronization)

  • 오세진;김종수;김성환;이성근;조성갑
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제31권8호
    • /
    • pp.998-1004
    • /
    • 2007
  • Connecting a synchronous generator to a power system is a dynamic process, requiring the coordinated operation of many components and systems. The goal is to connect the oncoming generator to the system smoothly i.e without causing any significant bumps, surges, or power swings, by closing the ACB when the oncoming generator matches the power system in voltage magnitude, phase angle, and frequency. If oncoming generator voltage is not matched to the power system voltage, reactive power will flow either into or out of the system at the instant of ACB closure. If this voltage difference is too great, the reactive power flow may result in high transient stresses that could damage the windings of the generator. Also, if oncoming generator frequency is not matched to the power system frequency, transient power will flow between generator and power system. If the frequency difference is too great, the transient power flow is reflected into the prime mover shaft, and this may result in excessive shaft or coupling stress. This paper tries to prove the necessity of correct synchronization for ship generators through a transient phenomenon analysis.

Analysis of Switching Clamped Oscillations of SiC MOSFETs

  • Ke, Junji;Zhao, Zhibin;Xie, Zongkui;Wei, Changjun;Cui, Xiang
    • Journal of Power Electronics
    • /
    • 제18권3호
    • /
    • pp.892-901
    • /
    • 2018
  • SiC MOSFETs have been used to improve system efficiency in high frequency converters due to their extremely high switching speed. However, this can result in undesirable parasitic oscillations in practical systems. In this paper, models of the key components are introduced first. Then, theoretical formulas are derived to calculate the switching oscillation frequencies after full turn-on and turn-off in clamped inductive circuits. Analysis indicates that the turn-on oscillation frequency depends on the power loop parasitic inductance and parasitic capacitances of the freewheeling diode and load inductor. On the other hand, the turn-off oscillation frequency is found to be determined by the output parasitic capacitance of the SiC MOSFET and power loop parasitic inductance. Moreover, the shifting regularity of the turn-off maximum peak voltage with a varying switching speed is investigated on the basis of time domain simulation. The distortion of the turn-on current is theoretically analyzed. Finally, experimental results verifying the above calculations and analyses are presented.

PMU 데이터를 이용한 저주파 진동분석 연구 (A Study on the Low Frequency Oscillation Using PMU Measurement Data)

  • 김용학;남수철;고백경;강성범;심관식
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제6권3호
    • /
    • pp.245-252
    • /
    • 2020
  • It is very important to evaluate on/off-line stability to operate the power system stably and economically. Until now, we have continuously secured the operation reliability of the power system through the evaluation of transient, voltage and small signal stability. This paper proposes that it is possible to operate in KWAMS by applying the multi-section analysis and subspace methods and verifying the reliability of the algorithms to directly estimate the dominant oscillation mode of the power system from the signal waveform acquired from the phasor measurement units. In addition, this paper shows that the dominant oscillation mode can be detected from real-time measurement data in power systems. Therefore, if we can monitor the state of the power system in real time, it is possible to avoid a large-scale power outage by knowing the possibility of the power system accident in advance.

Power System Nonlinearity Modal Interaction by the Normal Forms of Vector Fields

  • Zhang, Jing;Wen, J.Y.;Cheng, S.J.
    • Journal of Electrical Engineering and Technology
    • /
    • 제3권1호
    • /
    • pp.8-13
    • /
    • 2008
  • Because of the robust nonlinear characteristics appearing in today's modern power system, a strong interaction exists between the angle stability and the voltage stability, which were conventionally studied insularly. However, as the power system is a complex unified system, angle instability always happens in conjunction with voltage instability. The authors propose a novel method to analyze this type of stability problem. In the proposed method, the theory of normal forms of vector fields is utilized to treat the auxiliary dynamic system. By use of this method, the interaction between response modes caused by the nonlinearity of the power system can be analyzed. Consequently, the eigenvalue analysis method is extended to cope with performance analysis of the power system with heavy nonlinearity. The effectiveness of the proposed methodology is verified on a 3-bus power system.

전력선 통신을 이용한 원격 전력분석 및 제어시스템에 관한 연구 (The study of the remort power analysis and control system using power line communication)

  • 최원호;이후찬;박종연
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.211-213
    • /
    • 2005
  • RPA(Remelt Power Analysis)and RC(Remote Control) System have been researched from former several decade for a various power rate system a efficent power service and rising of personal expenses, etc. But the existing RPA and RC System have disadventage which are complex and high cost to install an individual communication network of electricity company This paper proposed a new type of RPA and RC System using PLC with Internet. and made components for proposal system so we made the PLC modem, the digital watt-hour meter with a build in PLC modem and the softwere on server computer for establishing the proposal system. The bit rate of the proposed system is about 4800bps.

  • PDF

System-Level Vulnerability Analysis for Commutation Failure Mitigation in Multi-infeed HVDC Systems

  • Yoon, Minhan;Jang, Gilsoo
    • Journal of Electrical Engineering and Technology
    • /
    • 제13권3호
    • /
    • pp.1052-1059
    • /
    • 2018
  • This paper deals with commutation failure of the line-commutated converter high voltage direct current (LCC HVDC) system caused by a three phase fault in the ac power system. An analytic calculation method is proposed to estimate the maximum permissible voltage drop at the LCC HVDC station on various operating point and to assess the area of vulnerability for commutation failure (AOV-CF) in the power system based on the residual phase voltage equation. The concept is extended to multi-infeed HVDC power system as the area of severity for simultaneous commutation failure (AOS-CF). In addition, this paper presents the implementation of a shunt compensator applying to the proposed method. An analysis and simulation have been performed with the IEEE 57 bus sample power system and the Jeju island power system in Korea.

복합전력계통 신뢰도평가에 있어서 확률론적 안전도연구 (Probabilistic Security Analysis in Composite Power System Reliability)

  • 김형철;차준민;김진오;권세혁
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.46-48
    • /
    • 2005
  • This paper discusses a probabilistic method for power system security assessment. The security analysis relates to the ability of the electric power systems to survive sudden disturbances such as electric short circuits or unanticipated loss of system elements. It consists of both steady state and dynamic security analyses, which are not two separate issues but should be considered together. In steady state security analysis including voltage security analysis, the analysis checks that the system is operated within security limits by OPF (optimal power flow) after the transition to a new operating point. Until now, many utilities have difficulty in including dynamic aspects due to computational capabilities. On the other hand. dynamic security analysis is required to ensure that the transition may lead to an acceptable operating condition. Transient stability, which is the ability of power systems to maintain synchronism when subjected to a large disturbance. is a principal component in dynamic security analysis. Usually any loss of synchronism may cause additional outages and make the present steady state analysis of the post-contingency condition inadequate for unstable cases. This is the reason for the need of dynamic studies in power systems. Probabilistic criterion can be used to recognize the probabilistic nature of system components while considering system security. In this approach. we do not have to assign any predetermined margin of safety. A comprehensive conceptual framework for probabilistic static and dynamic assessment is presented in this paper. The simulation results of the Western System Coordinating Council (WSCC) system compare an analytical method with Monte-Carlo simulation (MCS).

  • PDF

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권3호
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

Switched Shunt의 무효전력 민감도를 이용한 조류계산 수렴성 개선 (Improvement of the Power Flow Convergency Using Switched Shunt Reactive Power Sensitivity)

  • 오성균;양민욱;김건중
    • 전기학회논문지
    • /
    • 제61권3호
    • /
    • pp.355-360
    • /
    • 2012
  • It is difficult to converge power flow for the power system planning data. The main cause of power flow diverse is reactive power imbalance. A active power could be adjust by ELD or merit order but a reactive power couldn't dispatch before power flow analysis. The lack of reactive power of power system is cause a inadequate voltage drop This paper suggest new reactive power dispatch algorithm using switched shunt admittance. This algorithm uses reactive power sensitivity called switch shunt jacobian. When proposed algorithm applies to real system data that couldn't be conversed in PSS/E the power flow analysis is converged.

전후진 파워시프트 변속기 유압 제어 시스템 해석 (Analysis of Hydraulic Control System for Shuttle Power-shift Transmission)

  • 김대철
    • 유공압시스템학회논문집
    • /
    • 제6권4호
    • /
    • pp.16-23
    • /
    • 2009
  • The major system of an agricultural shuttle power-shift tractor is the transmission, using power-shift. Because the shifting performance depends on the hydraulic control system, the most important aspect of the optimization is the design of the hydraulic control system. This study was conducted to develop the simulation model of hydraulic control system for the shuttle power-shift transmission by using Easy5 software. Bench test was conducted to verify the simulation. Also, the design parameters which influence the pressure modulation characteristics were investigated.

  • PDF