• Title/Summary/Keyword: Power supply noise

Search Result 483, Processing Time 0.022 seconds

A Low Power, Wide Tuning Range VCO with Two-Step Negative-Gm Calibration Loop (2단계 자동 트랜스컨덕턴스 조절 기능을 가진 저전력, 광대역 전압제어 발진기의 설계)

  • Kim, Sang-Woo;Park, Joon-Sung;Pu, Young-Gun;Hur, Jeong;Lee, Kang-Yoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.2
    • /
    • pp.87-93
    • /
    • 2010
  • This paper presents a low-power, wide tuning range VCO with automatic two-step negative-Gm calibration loop to compensate for the process, voltage and temperature variation. To cover the wide tuning range, digital automatic negative-Gm tuning loop and analog automatic amplitude calibration loop are used. Adaptive body biasing (ABB) technique is also adopted to minimize the power consumption by lowering the threshold voltage of transistors in the negative-Gm core. The power consumption is 2 mA to 6mA from a 1.2 V supply. The VCO tuning range is 2.65 GHz, from 2.35 GHz to 5 GHz. And the phase noise is -117 dBc/Hz at the 1 MHz offset when the center frequency is 3.2 GHz.

A 5.3GHz wideband low-noise amplifier for subsampling direct conversion receivers (서브샘플링 직접변환 수신기용 5.3GHz 광대역 저잡음 증폭기)

  • Park, Jeong-Min;Seo, Mi-Kyung;Yun, Ji-Sook;Choi, Boo-Young;Han, Jung-Won;Park, Sung-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.12
    • /
    • pp.77-84
    • /
    • 2007
  • In this parer, a wideband low-noise amplifier (LNA) has been realized in a 0.18mm CMOS technology for the applications of subsampling direct-conversion RF receivers. By exploiting the inverter-type transimpedance input stage with a 3rd-order Chebyshev matching network, the wideband LNA demonstrates the measured results of the -3dB bandwidth of 5.35GHz, the power gain (S21) of $12\sim18dB$, the noise figure (NF) of $6.9\sim10.8dB$, and the broadband input/output impedance matching of less than -10dB/-24dB within the bandwidth, respectively. The chip dissipates 32.4mW from a single 1.8V supply, and occupies the area of $0.56\times1.0mm^2$.

Output Noise Reduction Technique Based on Frequency Hopping in a DC-DC Converter for BLE Applications

  • Park, Ju-Hyun;Kim, Sung Jin;Lee, Joo Young;Park, Sang Hyeon;Lee, Ju Ri;Kim, Sang Yun;Kim, Hong Jin;Lee, Kang-Yoon
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.5
    • /
    • pp.371-378
    • /
    • 2015
  • In this paper, a different type of pulse width modulation (PWM) control scheme for a buck converter is introduced. The proposed buck converter uses PWM with frequency hopping and a low quiescent.current low dropout (LDO) voltage regulator with a power supply rejection ratio enhancer to reduce high spurs, harmonics and output voltage ripples. The low quiescent.current LDO voltage regulator is not described in this paper. A three-bit binary-to-thermometer decoder scheme and voltage ripple controller (VRC) is implemented to achieve low voltage ripple less than 3mV to increase the efficiency of the buck converter. An internal clock that is synchronized to the internal switching frequency is used to set the hopping rate. A center frequency of 2.5MHz was chosen because of the bluetooth low energy (BLE) application. This proposed DC-DC buck converter is available for low-current noise-sensitive loads such as BLE and radio frequency loads in portable communications devices. Thus, a high-efficiency and low-voltage ripple is required. This results in a less than 2% drop in the regulator's efficiency, and a less than 3mV voltage ripple, with -26 dBm peak spur reduction operating in the buck converter.

Design of Variable Gain Low Noise Amplifier with Memory Effects Feedback for 5.2 GHz Band (5.2 GHz 대역에서 동작하는 기억 기능 특성을 갖는 궤환 회로를 이용한 변환 이득 저잡음 증폭기 설계)

  • Lee, Won-Tae;Jeong, Ji-Chai
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.1
    • /
    • pp.53-60
    • /
    • 2010
  • This paper presents a novel gain control system composed of a feedback circuit, Two stage Low Noise Amplifier (LNA) using 0.18 um CMOS technology for 5.2 GHz. The feedback circuit consists of the seven function blocks: peak detector, comparator, ADC, IVE(Initial Voltage Elimination) circuit, switch, storage, and current controller. We focus on detecting signal and designing storage circuit that store the previous state. The power consumption of the feedback circuit in the system can be reduced without sacrificing the gain by inserting the storage circuit. The adaptive front-end system with the feedback circuit exhibits 11.39~22.74 dB gain, and has excellent noise performance at high gain mode. Variable gain LNA consumes 5.68~6.75 mW from a 1.8 V supply voltage.

Design of a Multi-Band Low Noise Amplifier for 3GPP LTE Applications in 90nm CMOS (3GPP LTE를 위한 다중대역 90nm CMOS 저잡음 증폭기의 설계)

  • Lee, Seong-Ku;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.5
    • /
    • pp.100-105
    • /
    • 2010
  • A multi-band low noise amplifier (LNA) is designed in 90 nm RF CMOS process for 3GPP LTE (3rd Generation Partner Project Long Term Evolution) applications. The designed multi-band LNA covers the eight frequency bands between 1.85 and 2.8 GHz. A tunable input matching circuit is realized by adopting a switched capacitor array at the LNA input stage for providing optimum performances across the wide operating band. Current steering technique is adopted for the gain control in three steps. The performances of the LNA are verified through post-layout simulations (PLS). The LNA consumes 17 mA at 1.2 V supply voltage. It shows a power gain of 26 at the normal gain mode, and provides much lower gains of 0 and -6.7 in the bypass-I and -II modes, respectively. It achieves a noise figure of 1.78 dB and a IIP3 of -12.8 dBm over the entire band.

A SAW-less GPS RX Front-end using an Automatic LC Calibrator (자동변환 LC 캘리브레이터를 이용한 SAW 필터 없는 GPS RX 프론트앤드 구현)

  • Kim, Yeon-Bo;Moon, Hyunwon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.21 no.1
    • /
    • pp.43-50
    • /
    • 2016
  • In this paper, new automatic LC calibrator is proposed for realizing a passive LC filter with almost constant frequency characteristic regardless of the PVT variations. The SAW-less GPS RX front-end is implemented using a 65nm CMOS process using the proposed LC calibrator. Also, new dual-mode low noise amplifier (LNA) structure is proposed to generate the RF signal required for the LC calibrator. The characteristics of the implemented GPS RX front-end show the voltage gain of about 42.5 dB, noise figure of below 1.35 dB, the blocker input P1dB of -24 dBm in case of the worst blocker signal at 1710 MHz frequency, while it consumes 7 mA current at 1.2 V power supply voltage.

Design of a CMOS x-ray line scan sensors (CMOS x-ray 라인 스캔 센서 설계)

  • Heo, Chang-Won;Jang, Ji-Hye;Jin, Liyan;Heo, Sung-Kyn;Kim, Tae-Woo;Ha, Pan-Bong;Kim, Young-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.10
    • /
    • pp.2369-2379
    • /
    • 2013
  • A CMOS x-ray line scan sensor which is used in both medical imaging and non-destructive diagnosis is designed. It has a pixel array of 512 columns ${\times}$ 4 rows and a built-in DC-DC converter. The pixel circuit is newly proposed to have three binning modes such as no binning, $2{\times}2$ binning, and $4{\times}4$ binning in order to select one of pixel sizes of $100{\mu}m$, $200{\mu}m$, and $400{\mu}m$. It is designed to output a fully differential image signal which is insensitive to power supply and input common mode noises. The layout size of the designed line scan sensor with a $0.18{\mu}m$ x-ray CMOS image sensor process is $51,304{\mu}m{\times}5,945{\mu}m$.

Design of the Noise Margin Improved High Voltage Gate Driver IC for 300W Resonant Half-Bridge Converter (잡음 내성이 향상된 300W 공진형 하프-브리지 컨버터용 고전압 구동 IC 설계)

  • Song, Ki-Nam;Park, Hyun-Il;Lee, Yong-An;Kim, Hyoung-Woo;Kim, Ki-Hyun;Seo, Kil-Soo;Han, Seok-Bung
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.10
    • /
    • pp.7-14
    • /
    • 2008
  • In this paper, we designed the HVIC(High Voltage Gate Driver IC) which has improved noise immunity characteristics and high driving capability. Operating frequency and input voltage range of the designed HVIC is up to 500kHz and 650V, respectively. Noise protection and schmitt trigger circuit is included in the high-side level shifter of designed IC which has very high dv/dt noise immunity characteristic(up to 50V/ns). And also, rower dissipation of high-side level shifter with designed short-pulse generation circuit decreased more that 40% compare with conventional circuit. In addition, designed HVIC includes protection and UVLO circuit to prevent cross-conduction of power switch and sense power supply voltage of driving section, respectively. Protection and UVLO circuit can improve the stability of the designed HVIC. Spectre and Pspice circuit simulator were used to verify the operating characteristics of the designed HVIC.

Low Phase Noise VCO with X -Band Using Metamaterial Structure of Dual Square Loop (메타구조의 이중 사각 루프를 이용한 X-Band 전압 제어 발진기 구현에 관한 연구)

  • Shin, Doo-Soub;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.12
    • /
    • pp.84-89
    • /
    • 2010
  • In this paper, a novel voltage-controlled oscillator (VCO) using the microstrip square open loop dual split ring resonator is presented for reducing the phase noise. The square-shaped dual split ring resonator having the form of the microstrip square open loop is investigated to reduce the phase noise. Compared with the microstrip square open loop resonator and the microstrip square open loop split ring resonator as well as the conventional microstrip line resonator, the microstrip square dual split ring resonator has the larger coupling coefficient value, which makes a higher Q value, and has reduced the phase noise of VCO. The VCO with 1.7V power supply has the phase noise of -123.2~-122.0 dBc/Hz @ 100 kHz in the tuning range, 11.74~11.75 GHz. The figure of merit (FOM) of this VCO is-214.8~-221.7 dBc/Hz dBc/Hz @ 100 kHz in the same tuning range. Compared with VCO using the conventional microstrip line resonator, VCO using microstrip square open loop resonator, the phase noise of VCO using the proposed resonator has been improved in 26 dB, 10 dB, respectively.

Third order Sigma-Delta Modulator with Delayed Feed-forward Path for Low-power Operation (저전력 동작을 위한 지연된 피드-포워드 경로를 갖는 3차 시그마-델타 변조기)

  • Lee, Minwoong;Lee, Jongyeol
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.10
    • /
    • pp.57-63
    • /
    • 2014
  • This paper proposes an architecture of $3^{rd}$ order SDM(Sigma-Delta Modulator) with delayed feed-forward path in order to reduce the power consumption and area. The proposed SDM improve the architecture of conventional $3^{rd}$ order SDM which consists of two integrators. The proposed architecture can increase the coefficient values of first stage doubly by inserting the delayed feed-forward path. Accordingly, compared with the conventional architecture, the capacitor value($C_I$) of first integrator is reduced by half. Thus, because the load capacitance of first integrator became the half of original value, the output current of first op-amp is reduced as 51% and the capacitance area of first integrator is reduced as 48%. Therefore, the proposed method can optimize the power and the area. The proposed architecture in this paper is simulated under conditions which are supply voltage of 1.8V, input signal 1Vpp/1KHz, signal bandwidth of 24KHz and sampling frequency of 2.8224MHz in the 0.18um CMOS process. The simulation results are SNR(Signal to Noise Ratio) of 88.9dB and ENOB(Effective Number of Bits) of 14-bits. The total power consumption of the proposed SDM is $180{\mu}W$.