• Title/Summary/Keyword: Power semiconductor devices

Search Result 527, Processing Time 0.025 seconds

A Electrical Fire Disaster Prevention Device of High Speed and High Precision by using Semiconductor Switching Devices (반도체 스위칭 소자를 이용한 고속 고정밀의 전기화재 방재장치)

  • Kwak, Dong-Kurl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.423-430
    • /
    • 2009
  • Recently as the inactive response characteristics of the existing RCD used on low voltage power distribution system, so control of overload and electric short circuit faults, major causes of electrical fires, are not enough. Therefore, this paper confirms the unreliability of the existing RCD by electrical fault simulator and proposes a EFDPD by using semiconductor switching devices and a high precision current sensor (namely, reed switch) for the prevention of electrical disasters in low voltage power distribution system caused by overload or electric short circuit faults. The sensitive reed switch in the proposed EFDPD exactly detects the increased magnetic flux with the overload or the short current caused by a number of electrical faults, and the following, the self circuit breaker in EFDPD rapidly cuts off the system. The proposed EFDPD confirms the excellent characteristics in response velocity and accuracy in comparison with the conventional circuit breaker through various operation performance analysis. The proposed EFDPD can also prevent electrical disasters, like as electrical fires, which resulted from the malfunction and inactive response characteristics of the existing RCD.

A novel approach for designing of variability aware low-power logic gates

  • Sharma, Vijay Kumar
    • ETRI Journal
    • /
    • v.44 no.3
    • /
    • pp.491-503
    • /
    • 2022
  • Metal-oxide-semiconductor field-effect transistors (MOSFETs) are continuously scaling down in the nanoscale region to improve the functionality of integrated circuits. The scaling down of MOSFET devices causes short-channel effects in the nanoscale region. In nanoscale region, leakage current components are increasing, resulting in substantial power dissipation. Very large-scale integration designers are constantly exploring different effective methods of mitigating the power dissipation. In this study, a transistor-level input-controlled stacking (ICS) approach is proposed for minimizing significant power dissipation. A low-power ICS approach is extensively discussed to verify its importance in low-power applications. Circuit reliability is monitored for process and voltage and temperature variations. The ICS approach is designed and simulated using Cadence's tools and compared with existing low-power and high-speed techniques at a 22-nm technology node. The ICS approach decreases power dissipation by 84.95% at a cost of 5.89 times increase in propagation delay, and improves energy dissipation reliability by 82.54% compared with conventional circuit for a ring oscillator comprising 5-inverters.

A Study on the Affected of DC-Link Voltage Balance Control of the Vienna Rectifier Linked With the Input Series Output Parallel LLC Converter (직렬 입력 병렬 출력 연결된 LLC 컨버터를 갖는 비엔나 정류기의 DC 링크 전압 평형 제어에 관한 연구)

  • Baek, Seung-Woo;Kim, Hag-Wone;Cho, Kwan-Yuhl
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.3
    • /
    • pp.205-213
    • /
    • 2021
  • Due to the advantage of reducing the voltage applied to the switch semiconductor, the input series and output parallel combination is widely used in systems with high input voltage and large output current. On the other hand, the LLC converter is widely used as a high-efficiency power converter, and when connected by ISOP combination, there is a possibility that input voltage imbalance may occur due to a mismatch of passive devices. To avoid damaging the switching device, this study analyzed the DC-link voltage imbalance of a high-capacity supply using an ISOP LLC converter. In addition, the case where DC-link unbalance control was applied and the case not applied was analyzed respectively. Based on this analysis, an initial start-up algorithm was proposed to prevent input power semiconductor device damage due to DC-link over-voltage. The effectiveness of the proposed algorithm has been verified through simulations and experiments.

GaAs 기반 IPD(Integrated Passive Device)를 이용한 Power Divider

  • Yu, Chan-Se;Song, Saeng-Seop;Jeong, Seong-Hun;Lee, U-Seong;Kim, Jun-Cheol;Gang, Nam-Gi;Seo, Gwang-Seok
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.543-544
    • /
    • 2008
  • Nowadays, the research on the system integration using various technologies, like MCM-C, MCM-L and MCM-D. Especially, MCM-D technology is suitable for mmwave application due to its high resolution of patterning and thermal property similar to that of semiconductor devices. In this work, integrated passive devices like inductor, capacitor and resistor are evaluated on the GaAs substrate and their characteristics are examined. And finally, the Wilkinson power divider using lumped IPD are evaluated on GaAs substrate and it shows low insertion loss below 0.5 dB and the isolation over 15 dB.

  • PDF

Trends in Betavoltaic Battery Technology (베타전지 기술동향 분석)

  • Kang, T.W.;Choi, B.G.;Park, S.M.;Park, K.H.;Lee, J.J.;Kang, S.W.
    • Electronics and Telecommunications Trends
    • /
    • v.32 no.6
    • /
    • pp.40-47
    • /
    • 2017
  • One of the main technical constraints of a conventional battery is the limited lifetime of electric energy supplied. With self-power generation using an internal radioisotope as an emitter of beta particles, and a PN-junction semiconductor as an absorber of the beta particles, a betavoltaic battery can provide electric energy to electric devices in a semi-permanent manner. Hence, a betavoltaic battery can be adopted as the solution to the power source issue of IoT devices placed in locations that people cannot easily access, such as in the deep sea, a desert, and space, and requiring a long operation time without an electrical charging. This paper covers the current trends in betavoltaic batteries including issues regarding their technology, application, and patents.

A New Gate Driver Technique for Voltage Balancing in Series-Connected Switching Devices (직렬 연결된 SiC MOSFET의 전압 평형을 위한 새로운 능동 게이트 구동 기법)

  • Son, Myeong-Su;Cho, Young-Hoon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.1
    • /
    • pp.9-17
    • /
    • 2022
  • The series-connected semiconductor devices structure is one way to achieve a high voltage rating. However, a problem with voltage imbalance exists in which different voltages are applied to the series-connected switches. This paper proposed a new voltage balancing technique that controls the turn-off delay time of the switch by adding one bipolar junction transistor to the gate turn-off path. The validity of the proposed method is proved through simulation and experiment. The proposed active gate driver not only enables voltage balancing across a variety of current ranges but also has a greater voltage balancing performance compared with conventional RC snubber methods.

Single Stage Power Factor Correction Using A New Zero-Voltage-Transition Isolated Full Bridge PWM Boost Converter

  • Jeong, Chang.-Y.;Cho, Jung-G.;Baek, Ju-W.;Song, Du-I.;Yoo, Dong-W.
    • Proceedings of the KIPE Conference
    • /
    • 1998.10a
    • /
    • pp.694-700
    • /
    • 1998
  • A novel zero-voltage-transition (ZVT) isolated PWM boost converter for single stage power factor correction (PFC) is presented to improve the performance of the previously presented ZVT converter[8]. A simple auxiliary circuit which includes only one active switch provides zero-voltage-switching (ZVS) condition to all semiconductor devices. (Two active switches are required for the previous ZVT converter) This leads to reduced cost and simplified control circuit comparing to the previous ZVT converter. The ZVS is achieved for wide line and load ranges with minimum device voltage and current stresses. Operation principle, control strategy and features of the proposed converter are presented and verified by the experimental results from a 1.5 kW, 100 KHz laboratory prototype.

  • PDF

A Study of Smart Uninterruptible Power Supply Capable High Efficiency Drive (고효율 운전이 가능한 지능형 무정전 전원장치에 관한 연구)

  • Eom, Tae-Wook
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.5
    • /
    • pp.61-66
    • /
    • 2013
  • In this paper, a control scheme with the capability of high efficiency, which is realized by predicting the conditions of a load power and an input power, is proposed for the uninterruptible power supply (UPS). Generally, on-line UPS system supplies a constant voltage and a constant frequency (CVCF). However, the efficiency of the On-line UPS system can be reduced due to the switching losses of semiconductor devices during the power conversion. The these losses are improved by the proposed smart UPS with the high efficiency drive system, which is realized by analysing and predicting the conditions of a load power and an input power.

Testbed of Power MOSFET Aging Including the Measurement of On-State Resistance (전력용 MOSFET의 온-상태 저항 측정 및 노화 시험 환경 구축)

  • Shin, Joonho;Shin, Jong-Won
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.206-213
    • /
    • 2022
  • This paper presents setting up a laboratory-scale testbed to estimate the aging of power MOSFET devices and integrated power modules by measuring its on-state voltage and current. Based on the aging mechanisms of the component inside the power module (e.g., bond-wire, solder layer, and semiconductor chip), a system to measure the on-state resistance of device-under-test (DUT) is designed and experimented: a full-bridge circuit applies current stress to DUT, and a temperature chamber controls the ambient temperature of DUT during the aging test. The on-state resistance of SiC MOSFET measured by the proposed testbed was increased by 2.5%-3% after 44-hour of the aging test.

Improvement in Thermomechanical Reliability of Power Conversion Modules Using SiC Power Semiconductors: A Comparison of SiC and Si via FEM Simulation

  • Kim, Cheolgyu;Oh, Chulmin;Choi, Yunhwa;Jang, Kyung-Oun;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.3
    • /
    • pp.21-30
    • /
    • 2018
  • Driven by the recent energy saving trend, conventional silicon based power conversion modules are being replaced by modules using silicon carbide. Previous papers have focused mainly on the electrical advantages of silicon carbide semiconductors that can be used to design switching devices with much lower losses than conventional silicon based devices. However, no systematic study of their thermomechanical reliability in power conversion modules using finite element method (FEM) simulation has been presented. In this paper, silicon and silicon carbide based power devices with three-phase switching were designed and compared from the viewpoint of thermomechanical reliability. The switching loss of power conversion module was measured by the switching loss evaluation system and measured switching loss data was used for the thermal FEM simulation. Temperature and stress/strain distributions were analyzed. Finally, a thermal fatigue simulation was conducted to analyze the creep phenomenon of the joining materials. It was shown that at the working frequency of 20 kHz, the maximum temperature and stress of the power conversion module with SiC chips were reduced by 56% and 47%, respectively, compared with Si chips. In addition, the creep equivalent strain of joining material in SiC chip was reduced by 53% after thermal cycle, compared with the joining material in Si chip.