Browse > Article
http://dx.doi.org/10.4218/etrij.2020-0213

A novel approach for designing of variability aware low-power logic gates  

Sharma, Vijay Kumar (School of Electronics & Communication Engineering, Shri Mata Vaishno Devi University)
Publication Information
ETRI Journal / v.44, no.3, 2022 , pp. 491-503 More about this Journal
Abstract
Metal-oxide-semiconductor field-effect transistors (MOSFETs) are continuously scaling down in the nanoscale region to improve the functionality of integrated circuits. The scaling down of MOSFET devices causes short-channel effects in the nanoscale region. In nanoscale region, leakage current components are increasing, resulting in substantial power dissipation. Very large-scale integration designers are constantly exploring different effective methods of mitigating the power dissipation. In this study, a transistor-level input-controlled stacking (ICS) approach is proposed for minimizing significant power dissipation. A low-power ICS approach is extensively discussed to verify its importance in low-power applications. Circuit reliability is monitored for process and voltage and temperature variations. The ICS approach is designed and simulated using Cadence's tools and compared with existing low-power and high-speed techniques at a 22-nm technology node. The ICS approach decreases power dissipation by 84.95% at a cost of 5.89 times increase in propagation delay, and improves energy dissipation reliability by 82.54% compared with conventional circuit for a ring oscillator comprising 5-inverters.
Keywords
CMOS; ICS; Monte Carlo simulation; nanoscale regime; ultra-low power; VLSI;
Citations & Related Records
연도 인용수 순위
  • Reference
1 V. Muralidharan and N. S. Kumar, Design and implementation of low power and high speed multiplier using quaternary carry look-ahead adder, Microprocess. Microsyst. 75 (2020), no. 103054, 1-9. https://doi.org/10.1016/j.micpro.2020.103054   DOI
2 H. Al-Hertani, D. Al-Khalili, and C. Rozon, UDSM subthreshold leakage model for NMOS transistor stacks, Microelectron. J. 39 (2008), no. 12, 1809-1816. https://doi.org/10.1016/j.mejo.2008.05.002   DOI
3 R. Lorenzo and S. Chaudhury, LCNT-an approach to minimize leakage power in CMOS integrated circuits, Microsyst. Technol. 23 (2017), no. 9, 4245-4253. https://doi.org/10.1007/s00542-016-2996-y   DOI
4 R. Taco, I. Levi, M. Lanuzza, and A. Fish, Low voltage logic circuits exploiting gate level dynamic body biasing in 28 nm UTBB FD-SOI, Solid-State Electron. 117 (2016), 185-192. https://doi.org/10.1016/j.sse.2015.11.013   DOI
5 S.-M. Kang and Y. Leblebici, CMOS digital integrated circuits analysis and design, 3rd ed., Tata McGraw-Hill Education, New Delhi, 2003.
6 P. F. Butzen, L. S. da Rosa Jr, E. J. D. C. Filho, A. I. Reis, and R. P. Ribas, Standby power consumption estimation by interacting leakage current mechanisms in nanoscaled CMOS digital circuits, Microelectron. J. 41 (2010), no. 4, 247-255. https://doi.org/10.1016/j.mejo.2010.03.003   DOI
7 B. C. Paul, A. Agarwal, and K. Roy, Low-power design techniques for scaled technologies, Integr. VLSI J. 39 (2006), no. 2, 64-89.   DOI
8 S. Garg and T. K. Gupta, Low power domino logic circuits in deep-submicron technology using CMOS, Eng. Sci. Technol., Int. J. 21 (2018), no. 4, 625-638. https://doi.org/10.1016/j.jestch.2018.06.013   DOI
9 J.-F. Lin, Z.-J. Hong, C.-M. Tsai, B.-C. Wu, and S.-W. Yu, Novel Low-complexity and low-power flip-flop design, Electron 9 (2020), no. 5, 783:1-12. https://doi.org/10.3390/electronics9050783   DOI
10 V. K. Sharma, S. Patel, and M. Pattanaik, High performance process variations aware technique for sub-threshold 8T-SRAM cell, Wirel. Pers. Commun. 78 (2014), no. 1, 57-68. https://doi.org/10.1007/s11277-014-1735-x   DOI
11 V. K. Sharma and M. Pattanaik, Process, voltage and temperature variations aware low leakage approach for nanoscale CMOS circuits, J. Low Power Electron. 10 (2014), no. 1, 45-52. https://doi.org/10.1166/jolpe.2014.1293   DOI
12 V. K. Sharma and M. Pattanaik, Techniques for low leakage nanoscale VLSI circuits: a comparative study, J. Circuits, Syst., Comput. 23 (2014), no. 5, 1450061. https://doi.org/10.1142/S0218126614500613   DOI
13 P. Corsonello, M. Lanuzza, and S. Perri, Gate-level body biasing technique for high-speed sub-threshold CMOS logic gates, Int. J. Circuit Theory Applicat. 42 (2014), no. 1, 65-70. https://doi.org/10.1002/cta.1838   DOI
14 S. Mukhopadhyay, C. Neau, R. T. Cakici, A. Agarwal, C. H. Kim, and K. Roy, Gate leakage reduction for scaled devices using transistor stacking, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 11 (2003), no. 4, 716-730. https://doi.org/10.1109/TVLSI.2003.816145   DOI
15 M. Anis, S. Areibi, and M. Elmasry, Design and optimization of multithreshold CMOS (MTCMOS) circuits, IEEE Trans. Comput.-Aided des. Integr. Circuits Syst. 22 (2003), no. 10, 1324-1342. https://doi.org/10.1109/TCAD.2003.818127   DOI
16 J. C. Park and V. J. Mooney III, Sleepy Stack Leakage Reduction, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 14 (2006), no. 11, 1250-1263. https://doi.org/10.1109/TVLSI.2006.886398   DOI
17 R. Taco, I. Levi, M. Lanuzza, and A. Fish, An 88fJ/40 MHz [0.4V] - 0.61pJ/1GHz [0.9V] Dual Mode Logic 8×8-Bit Multiplier Accumulator with a Self-Adjustment Mechanism in 28 nm FD-SOI, IEEE J. Solid-State Circuits 54 (2018), no. 2, 560-568. https://doi.org/10.1109/ISCAS.2019.8702170   DOI
18 J. T. Kao and A. P. Chandrakasan, Dual-threshold voltage techniques for low-power digital circuits, IEEE J. Solid-State Circuits 35 (2000), no. 7, 1009-1018. https://doi.org/10.1109/4.848210   DOI
19 N. Hanchate and N. Ranganathan, LECTOR: a technique for leakage reduction in CMOS circuits, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 12 (2004), no. 2, 196-205. https://doi.org/10.1109/TVLSI.2003.821547   DOI
20 S. Birla, S. Mahanti, and N. Singh, Leakage reduction technique for nano-scaled devices, Circuit World 47 (2020), no. 1, 97-104. https://doi.org/10.1108/CW-12-2019-0195   DOI
21 A. Kaizerman, S. Fisher, and A. Fish, Subthreshold dual mode logic, IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 21 (2012), no. 5, 979-983. https://doi.org/10.1109/TVLSI.2012.2198678   DOI
22 V. K. Sharma and M. Pattanaik, A reliable ground bounce noise reduction technique for nanoscale CMOS circuits, Int. J. Electron. 102 (2015), no. 11, 1852-1866. https://doi.org/10.1080/00207217.2014.996786   DOI