• Title/Summary/Keyword: Power electronic converter loss

Search Result 82, Processing Time 0.023 seconds

Single-Power-Conversion Series-Resonant AC-DC Converter with High Efficiency (고효율을 갖는 단일 전력변환 직렬 공진형 AC-DC 컨버터)

  • Jeong, Seo-Gwang;Cha, Woo-Jun;Lee, Sung-Ho;Kwon, Bong-Hwan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.224-230
    • /
    • 2016
  • In this study, a single-power-conversion series-resonant ac-dc converter with high efficiency and high power factor is proposed. The proposed ac-dc converter consists of single-ended primary-inductor converter with an active-clamp circuit and a voltage doubler with series-resonant circuit. The active-clamp circuit clamps the surge voltage and provides zero-voltage switching of the main switch. The series-resonant circuit consists of leakage inductance $L_{lk}$ of the transformer and resonant capacitors $ C_{r1}$ and $ C_{r2}$. This circuit also provides zero-current switching of output diodes $D_1$ and $D_2$. Thus, the switching loss of switches and reverse-recovery loss of output diodes are considerably reduced. The proposed ac-dc converter also achieves high power factor using the proposed control algorithm without the addition of a power factor correction circuit and a dc-link electrolytic capacitor. A detailed theoretical analysis and the experimental results for a 1kW prototype are discussed.

Dual-Output Single-Stage Bridgeless SEPIC with Power Factor Correction

  • Shen, Chih-Lung;Yang, Shih-Hsueh
    • Journal of Power Electronics
    • /
    • v.15 no.2
    • /
    • pp.309-318
    • /
    • 2015
  • This study proposes a dual-output single-stage bridgeless single-ended primary-inductor converter (DOSSBS) that can completely remove the front-end full-bridge alternating current-direct current rectifier to accomplish power factor correction for universal line input. Without the need for bridge diodes, the proposed converter has the advantages of low component count and simple structure, and can thus significantly reduce power loss. DOSSBS has two uncommon output ports to provide different voltage levels to loads, instead of using two separate power factor correctors or multi-stage configurations in a single stage. Therefore, this proposed converter is cost-effective and compact. A magnetically coupled inductor is introduced in DOSSBS to replace two separate inductors to decrease volume and cost. Energy stored in the leakage inductance of the coupled inductor can be completely recycled. In each line cycle, the two active switches in DOSSBS are operated in either high-frequency pulse-width modulation pattern or low-frequency rectifying mode for switching loss reduction. A prototype for dealing with an $85-265V_{rms}$ universal line is designed, analyzed, and built. Practical measurements demonstrate the feasibility and functionality of the proposed converter.

Design and Efficiency Analysis 48V-12V Converter using Gate Driver Integrated GaN Module (게이트 드라이버가 집적된 GaN 모듈을 이용한 48V-12V 컨버터의 설계 및 효율 분석)

  • Kim, Jongwan;Choe, Jung-Muk;Alabdrabalnabi, Yousef;Lai, Jih-Sheng Jason
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.3
    • /
    • pp.201-206
    • /
    • 2019
  • This study presents the design and experimental result of a GaN-based DC-DC converter with an integrated gate driver. The GaN device is attractive to power electronic applications due to its superior device performance. However, the switching loss of a GaN-based power converter is susceptible to the common source inductance, and converter efficiency is severely degraded with a large loop inductance. The objective of this study is to achieve high-efficiency power conversion and the highest power density using a multiphase integrated half-bridge GaN solution with minimized loop inductance. Before designing the converter, several GaN and Si devices were compared and loss analysis was conducted. Moreover, the impact of common source inductance from layout parasitic inductance was carefully investigated. Experimental test was conducted in buck mode operation at 48 -12 V, and results showed a peak efficiency of 97.8%.

A Study on Switching Characteristics of Active Clamp Type Flyback Converter with Synchronous Rectifier Driving Signals Controlling Auxiliary Switch (보조스위치가 동기정류기 구동 신호로 제어되는 능동 클램프형 플라이백 컨버터의 스위칭 특성에 관한 연구)

  • Ahn, Tae Young
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.3
    • /
    • pp.21-26
    • /
    • 2018
  • In this paper, the switching characteristics of the active clamp type flyback converter, which is deemed suitable for the miniaturization of the external power supply for home appliance, were analyzed and the process of reducing the switching loss was explained. The active clamp type flyback converter operating in the DCM has confirmed that the surge voltage of the main switch does not occur and the turn-off / on loss of the switch do not occur in principle. Also, in the case of the switch for synchronous rectifier, it was showed that the switch current showed half-wave rectified sinusoidal characteristic, and the switching loss was reduced. The switching characteristics of the experimental results gathered from 120 W class prototype were compared with the theoretical waveform in the steady-state and it was confirmed that the power conversion efficiency of the active clamp type flyback converter was maintained high due to the reduction of the switching loss.

The Converter of High Efficiency 48V 400A for Electronic Exchange (전자교환기용 고효율 48V 400A급 전력변환장치의 시작)

  • 박성우;서기영;전중함;김부국;이현우
    • Proceedings of the KIPE Conference
    • /
    • 1998.11a
    • /
    • pp.60-63
    • /
    • 1998
  • The widely used power supply (Switched Mode Power Supply : SMPS) as a source in order to stabilize direct current for electronics or communication systems has merits, when it is compared to the existing source for stability, such as high efficiency, small size, light weight by means of switching process of the semiconductor device which controls the flow of power. However, due to existence of inductors and capacitors used for charging energy, the source part in electronic or communication systems hasn't reached the speed, that is supposed to get, for achieving smaller size and lighter weight. In order to get smallness in size, it is necessary to increase switching frequency. And that makes devices for measuring energy smaller. Nevertheless, the rise switching frequency brings increases in switching loss, inductor loss, and power loss. Also, the occurrence of surge and noise caused by high frequency switching is getting higher. The resonant converter has been considered as one of methods that give solutions for the problems of SMPS and that method have been paid attention as a source technology in electronics and communication.

  • PDF

High-Efficiency Supercapacitor Charger Using an Improved Two-Switch Forward Converter

  • Choi, Woo-Young;Yang, Min-Kwon;Suh, Yongsug
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.1-10
    • /
    • 2014
  • This paper proposes a high-efficiency supercapacitor charger. Conventional two-switch forward converter can be used for charging supercapacitors. However, the efficiency of conventional converters is low because of their switching losses. This study presents a high-efficiency two-switch forward converter for supercapacitor chargers. The proposed converter improves power efficiency by 4 %, from 89 % to 93 %. The proposed converter has the advantages of reduced switch voltage stresses and minimized circulating current when compared to other converter topologies. The performance of the proposed converter is evaluated by experimental results using a 300 W prototype circuit for a 54-V, 35-F supercapacitor bank.

Converter to Compensate for PV Module Mismatch in Solar PV String (PV 스트링의 모듈 부정합 보상용 컨버터)

  • Park, Gi-Yob;Ahn, Hee-Wook
    • Proceedings of the KIPE Conference
    • /
    • 2009.11a
    • /
    • pp.123-125
    • /
    • 2009
  • Mismatch of electrical characteristics of modules in PV string invokes mismatch power loss. The mismatch occurs due to various causes such as shadow, aging, contamination, and module exchange. The concept of mismatch compensation converter(MCC) is presented in this paper to remedy the mismatch loss problem. MCC is connected to irregular modules only. MCC is composed of dc-dc converter and MPPT controller. It is noted that MPPT algorithm is employed to control MCC and is effective for maximum power available from irregular modules. The selection guide of MPPT control period is given based on the period of MPPT in PCU. The effectiveness of the MCC is verified by a prototype experiment.

  • PDF

A Noel Soft-Switching AC-DC Converter using $L^2SC$

  • Kim C. S.;Lee H. W.;Suh K. Y.;Kim H. D.;Kim K. T.
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.271-275
    • /
    • 2001
  • In this paper, proposes a novel AC-DC converter of high power factor and high efficiency by partial resonant method. The input current waveform in proposed circuit is got to be a discontinuous sinusoidal form in proportion to magnitude of ac input voltage under the constant duty cycle switching. Thereupon, the input power factor is nearly unity and the control circuit is simple. Also the switching devices in a proposed circuit are operated with soft switching by the partial resonant method. The result is that the switching loss is very low and the efficiency of system is high. The partial resonant circuit makes use of a inductor using step up and $L^2SC$ (Loss-Less Snubber Condenser). The switching control technique of the converter is simplified for switches to drive in constant duty cycle. Some simulative results and experimental results are included to confirm the validity of the analytical results.

  • PDF

Power Factor with Single Power Stage AC/DC Converter Operated in Active-Clamp Mode (능동 클램프 모드로 동작하는 단일 전력 AC/DC 컨버터에 의한 역률개선)

  • Yoon, Shin-Yong;Baek, Hyun-Soo;Kim, Yong;Kim, Cherl-Jin;Eo, Chang-Jin
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.50 no.8
    • /
    • pp.392-401
    • /
    • 2001
  • This paper presents the single-stage high power factor AC to DC converter operated in active-clamp mode. The proposed converter is added active-clamping circuit to boost-flyback single-stage power factor corrected power supply. The active-clamping circuit limits voltage spikes, recycles the energy trapped in the leakage inductance, and provides a mechanism for achieving soft switching of the electronic switches to reduce the switching loss. The auxiliary switch of active-clamping circuit uses the same control and driver circuit as the main switch to reduce the additional cost and size. To verify the performance of the proposed converter, a 100W converter has been designed. The proposed converter gives good power factor correction, low line current harmonic distortions, and tight output voltage regulation, as used unity power factor.

  • PDF

DC-DC Converter of High Efficiency by using Loss-less Snubber Capacitor (무손실 스너버 커패시터에 의한 고효율의 DC-DC 컨버터)

  • Kwak, Dong-Kurl;Lee, Bong-Seob;Kim, Choon-Sam;Shim, Jae-Sun
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.1049-1050
    • /
    • 2006
  • This paper is proposed to a novel DC-DC converter operated high efficiency for loss-less snubber capacitor. The general converters of high efficiency is made that the power loss of the used switching devices is minimized. To achieve the soft switching operation of the used control switches, the proposed converter is constructed by using a loss-less snubber capacitor. The proposed converter achieves the soft-switching for all switching devices without increasing their voltage and current stresses. The result is that the switching loss is very low and the efficiency of converter is high. The soft switching operation of the proposed converter is verified by digital simulation and experimental results.

  • PDF