Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.2.309

Dual-Output Single-Stage Bridgeless SEPIC with Power Factor Correction  

Shen, Chih-Lung (Dept. of Electronic Eng., National Kaohsiung First University of Science and Technology)
Yang, Shih-Hsueh (Dept. of Electronic Eng., National Kaohsiung First University of Science and Technology)
Publication Information
Journal of Power Electronics / v.15, no.2, 2015 , pp. 309-318 More about this Journal
Abstract
This study proposes a dual-output single-stage bridgeless single-ended primary-inductor converter (DOSSBS) that can completely remove the front-end full-bridge alternating current-direct current rectifier to accomplish power factor correction for universal line input. Without the need for bridge diodes, the proposed converter has the advantages of low component count and simple structure, and can thus significantly reduce power loss. DOSSBS has two uncommon output ports to provide different voltage levels to loads, instead of using two separate power factor correctors or multi-stage configurations in a single stage. Therefore, this proposed converter is cost-effective and compact. A magnetically coupled inductor is introduced in DOSSBS to replace two separate inductors to decrease volume and cost. Energy stored in the leakage inductance of the coupled inductor can be completely recycled. In each line cycle, the two active switches in DOSSBS are operated in either high-frequency pulse-width modulation pattern or low-frequency rectifying mode for switching loss reduction. A prototype for dealing with an $85-265V_{rms}$ universal line is designed, analyzed, and built. Practical measurements demonstrate the feasibility and functionality of the proposed converter.
Keywords
Bridgeless PFC; Coupled inductor; Dual-output converter; Single stage; Universal line input;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. J. Sabzali, E. H. Ismail, M. A. Al-Saffar, and A. A. Fardoun, “New bridgeless DCM SEPIC and Ćuk PFC rectifiers with low conduction and switching losses,” IEEE Trans. Ind. Appl., Vol. 47, No. 2, pp. 873-881, Mar./Apr. 2011.   DOI   ScienceOn
2 M. Mahdavi and H. Farzanehfard, “Bridgeless SEPIC PFC rectifier with reduced components and conduction losses,” IEEE Trans. Ind. Electron., Vol. 58, No. 9, pp. 4153-4160, Sep. 2011.   DOI   ScienceOn
3 J.-W. Yang and H.-L. Do, “Bridgeless SEPIC converter with a ripple-free input current,” IEEE Trans. Powerw Electron., Vol. 28, No. 7, pp. 3388-3394, Jul. 2013.   DOI   ScienceOn
4 E. H. Ismail, “Bridgeless SEPIC rectifier with unity power factor and reduced conduction losses,” IEEE Trans. Ind. Electron., Vol. 56, No. 4, pp. 1147-1157, Apr. 2009.   DOI   ScienceOn
5 W.-Y. Choi and J.-Y. Choi, “A novel single-stage AC-DC converter to supply sustain power for plasma display panels,” J. Display Technol., Vol. 7, No. 9, pp. 494-502, Sep. 2011.   DOI   ScienceOn
6 J.-M. Kwon, W.-Y. Choi, J.-J. Lee, E.-H. Kim, and B.-H. Kwon, “Continuous conduction mode SEPIC converter with low reverse-recovery loss for power factor correction,” IEE Proc. Elect. Power Appl., Vol. 153, No. 5, pp. 673-681, Sep. 2006.   DOI   ScienceOn
7 L. Huber, Y. Jang, and M. M. Jovanovic, “Performance evaluation of bridgeless PFC Boost rectifiers,” IEEE Trans. Power Electron., Vol. 23, No. 3, pp. 1381-1390, May 2008.   DOI   ScienceOn
8 P. F. Melo, R. Gules, E. F. R. Romaneli, and R. C. Annunziato, “A modified SEPIC converter for high power factor rectifier and universal-input voltage applications,” IEEE Trans. Power Electron., Vol. 25, No. 2, pp. 310-321, Feb. 2010.   DOI   ScienceOn
9 H. Ma, J. S. Lai, Q. Feng, W. Yu, C. Zheng, and Z. Zhao, “A novel valley-fill SEPIC-derived power supply without electrolytic capacitors for LED lighting application,” IEEE Trans. Power Electron., Vol. 27, No. 6 pp. 3057-3071, Jun. 2012.   DOI   ScienceOn
10 Y. Jang and M. M. Jovanovi´c, “Bridgeless high-power-factor Buck converter,” IEEE Trans. Power Electron., Vol. 26, No. 2, pp. 602-611, Feb. 2011.   DOI   ScienceOn
11 W. Wei, L. Hongpeng, J. Shigong, and X. Dianguo, “A novel bridgeless buck-boost PFC converter,” in Proc. IEEE Power Electron. Spec. Conf., pp. 1304-1308, Jun. 2008.
12 K. Shu-Kong, and D. D. C. Lu, “A high step-down transformerless single-stage single-switch AC/DC converter,” IEEE Trans. Power Electron., Vol. 28, No. 4, pp. 36-45, Jan. 2013.   DOI   ScienceOn
13 A. Kavitha, G. Uma, and M. Beni Reesha, “Analysis of fast-scale instability in a power factor correction Ćuk converter,” IET Power Electron., Vol. 5, No. 8, pp. 1333-1340, Sep. 2012.   DOI   ScienceOn
14 H. Zhang, Y. Zhang, and X. Ma, “Distortion behavior analysis of general pulse-width modulated Zeta PFC converter operating in continuous conduction mode,” IEEE Trans. Power Electron., Vol. 27, No. 10, pp. 4212-4223, Oct. 2012.   DOI   ScienceOn
15 S. Singh, and B. Singh, “Voltage controlled PFC Zeta converter based PMBLDCM drive for an air-conditioner,” Industrial and Information Systems (ICIIS), 2010 International Conference on, pp. 550-555, Aug. 2010.
16 J. J. Lee, J. M. Kwon, E. H. Kim, W. Y. Choi, and B. H. Kwon, “Single-stage single-switch PFC flyback converter using a synchronous rectifier,” IEEE Trans. Ind. Electron., Vol. 55, No. 3, pp. 1352-1365, Mar. 2008.   DOI   ScienceOn
17 J. Garcia, M. Dalla-Costa, A. Kirsten, D. Gacio, and A. Calleja, “A novel flyback-based input PFC stage for electronic ballasts in lighting applications,” IEEE Trans. Ind. Appl., Vol. 49, No. 2, pp. 769-777, Mar./Apr. 2013.   DOI   ScienceOn
18 H. Athab, D. Lu, and K. Ramar, “A single-switch AC/DC flyback converter using a CCM/DCM quasi-active power factor correction front-end,” IEEE Trans. Ind. Electron., Vol. 59, No. 3, pp. 1517-1526, Mar. 2012.   DOI   ScienceOn
19 H. J. Chiu, Y. K. Lo, H. C. Lee, S. J. Cheng, Y. C. Yan, C. Y. Lin, T. H. Wang, and S. C. Mou, “A single-stage soft-switching flyback converter for power-factorcorrection applications,” IEEE Trans. Ind. Electron., Vol. 57, No. 6, pp. 2187-2190, Jun. 2010.   DOI   ScienceOn
20 X. Xie, J. Wang, C. Zhao, Q. Lu, and S. Liu, “A novel output current estimation and regulation circuit for primary side controlled high power factor single-stage flyback LED driver,” IEEE Trans. Power Electron., Vol. 27, No. 11, pp. 4602-4612, Nov. 2012.   DOI   ScienceOn
21 X. Qu, S.C. Wong, and C. K. Tse, “Resonance-assisted buck converter for offline driving of power LED replacement lamps,” IEEE Trans. Power Electron., Vol. 26, No. 2, pp. 532-540, Feb. 2011.   DOI   ScienceOn
22 B. A. Mather and D. Maksimović, “A simple digital power-factor correction rectifier controller,” IEEE Trans. Power Electron., Vol. 26, No. 1, pp. 9-19, Jan. 2011.   DOI   ScienceOn
23 H.C. Chen, “Interleaved current sensorless control for multiphase boost-type switch-mode rectifier with phase-shedding operation,” IEEE Trans. Ind. Electron., Vol. 61, No. 2, pp. 766-775, Feb. 2014.   DOI   ScienceOn
24 J. Chen, D. Maksimovic, and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Trans. Power Electron., Vol. 21, No. 2, pp. 320-329, Mar. 2006.   DOI   ScienceOn