• 제목/요약/키워드: Power devices

검색결과 4,699건 처리시간 0.044초

파워 효율이 높은 모바일 IoT 단말 개발을 위한 소프트웨어 공학 원칙 (Software Engineering Principles for the Development of Power-Efficient Mobile IoT Devices)

  • 이혜선;이강복;방효찬
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제21권12호
    • /
    • pp.762-767
    • /
    • 2015
  • 다양한 사물이 유무선 네트워크를 통해 연결되어 정보를 수집, 처리, 교환/공유하는 사물인터넷(IoT) 환경에서 대표적인 역할을 하는 것이 스마트폰, 태블릿과 같은 모바일 IoT 단말이다. 이 단말은 고성능 어플리케이션 서비스를 제공하기 위해 파워 소비량이 많은 편이지만 전원을 상시 공급할 수 없기 때문에 효율적으로 파워를 관리하는 것이 중요하다. 모바일 IoT 단말의 파워 소비에는 어플리케이션 프로세서(AP), AP 내/외부 하드웨어 모듈, 운영체제, 모바일 IoT 플랫폼, 어플리케이션 등 다양한 요소가 복잡하게 얽혀 있다. 따라서 파워 효율이 높은 모바일 IoT 단말을 개발하기 위해서는 이 관계를 체계적으로 파악하고 이를 바탕으로 파워 관리를 할 수 있도록 하는 방법이 필요하다. 이를 해결하기 위해 본 논문에서는 파워 효율이 높은 모바일 IoT 단말 개발을 위한 소프트웨어 공학적 원칙을 소개한다. 제안하는 원칙은 스마트폰의 카메라 서비스 파워 관리 개발에 적용하여 검증하였다.

저압용 SPD가 설치된 전력선통신에서 데이터전송 성능 향상 (A Method for Enhancing Data Transmission Performance in the Power-Line Communication Channel with Low-Voltage Surge Protective Devices)

  • 최종민;전태현
    • 조명전기설비학회논문지
    • /
    • 제26권2호
    • /
    • pp.78-85
    • /
    • 2012
  • Low-Voltage power lines should equip surge protection devices which protect electronic equipments and human lives against lightning and abnormal voltages. Data transmission capacity of the power line is determined by frequency characteristics of the surge protective devices. To analyze the effects of surge protective devices on the data transmission performance, various combinations of installation methods are tested which include ZnO varistor elements that is compatible with class I, class II and class III. The result claims that ZnO varistor for class III is found to be one of the main factors that deteriorates the transmission performance. To overcome this problem a serial connection methed between Gap type SPD and ZnO varistor is proposed. With the proposed scheme, laboratory experimental results show that the data transmission performance can be improved up to 91.9[%] with proper SPD combination.

실리콘 액정표시 장치 시스템을 위한 00.5μm 이중 게이트 고전압 CMOS 공정 연구 (A Study on the 0.5μm Dual Gate High Voltage CMOS Process for Si Liquid Display System)

  • 송한정
    • 한국전기전자재료학회논문지
    • /
    • 제15권12호
    • /
    • pp.1021-1026
    • /
    • 2002
  • As the development of semiconductor process technology continue to advance, ICs continue their trend toward higher performance low power system-on-chip (SOC). These circuits require on board multi power supply. In this paper, a 0.5 ㎛ dual date oxide CMOS Process technology for multi-power application is demonstrated. 5 V and 20 V devices fabricated by proposed process is measured. From 5 V devices using dual gate precess, we got almost the same characteristics as are obtained from standard 5 V devices. And the characteristics of the 20 V device demonstrates that 3 ㎛ devices with minimum gate length are available without reliability degradation. Electrical parameters in minimum 3 ㎛ devices are 520 ㎂/㎛ current density, 120 ㎷ DIBL, 24 V BV for NMOS and ,350 ㎂/㎛ current density, 180 ㎷ DIBL, 26 V BV for PMOS, respectively.

Stabilizer-free 초전도 선재를 이용한 한류 소자 제작 및 특성 시험 (Fabrication and characterization of fault current limiting devices made of stabilizer-free coated conductors)

  • 임성우;박충렬;유승덕;김혜림;현옥배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2009년도 하계학술대회 논문집
    • /
    • pp.371-371
    • /
    • 2009
  • For the application of superconducting wires to fault current limiting devices, it is required that they have a high rated voltage when a fault occurs. Stabilizer-free coated conductors, particularly, shows a good performance for the high rated voltage, which is beyond 0.6 V/cm. In this study, using the stabilizer-free coated conductors, we made fault current limiting devices and examined their characteristics. Fault current limiting devices were fabricated with a shape of the cylinder of a mono-filar coil winding. Stabilizer-free coated conductors were wound along the mono-filar coil line and the terminal parts between the wire and metal were soldered using In solder. Two kinds of devices were fabricated by a different method in the terminal joint, one was made by a soldering and the other was made by a soldering-free joint. Critical currents and resistance at the joint parts were measured. In addition, long-time current flowing tests were also carried out for the characterization of the fault current limiting devices.

  • PDF

Power-Efficient Wireless Neural Stimulating System Design for Implantable Medical Devices

  • Lee, Hyung-Min;Ghovanloo, Maysam
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제4권3호
    • /
    • pp.133-140
    • /
    • 2015
  • Neural stimulating implantable medical devices (IMDs) have been widely used to treat neurological diseases or interface with sensory feedback for amputees or patients suffering from severe paralysis. More recent IMDs, such as retinal implants or brain-computer interfaces, demand higher performance to enable sophisticated therapies, while consuming power at higher orders of magnitude to handle more functions on a larger scale at higher rates, which limits the ability to supply the IMDs with primary batteries. Inductive power transmission across the skin is a viable solution to power up an IMD, while it demands high power efficiencies at every power delivery stage for safe and effective stimulation without increasing the surrounding tissue's temperature. This paper reviews various wireless neural stimulating systems and their power management techniques to maximize IMD power efficiency. We also explore both wireless electrical and optical stimulation mechanisms and their power requirements in implantable neural interface applications.

RF Energy Harvesting and Charging Circuits for Low Power Mobile Devices

  • Ahn, Chang-Jun;Kamio, Takeshi;Fujisaka, Hisato;Haeiwa, Kazuhisa
    • IEIE Transactions on Smart Processing and Computing
    • /
    • 제3권4호
    • /
    • pp.221-225
    • /
    • 2014
  • Low power RF devices, such as RFID and Zigbee, are important for ubiquitous sensing. These devices, however, are powered by portable energy sources, such as batteries, which limits their use. To mitigate this problem, this study developed RF energy harvesting with W-CDMA for a low power RF device. Diodes are required with a low turn on voltage because the diode threshold is larger than the received peak voltage of the rectifying antenna (rectenna). Therefore, a Schottky diode HSMS-286 was used. A prototype of RF energy harvesting device showed the maximum gain of 5.8dBi for the W-CDMA signal. The 16 patch antennas were manufactured with a 10 dielectric constant PTFT board. In low power RF devices, the transmitter requires a step-up voltage of 2.5~5V with up to 35 mA. To meet this requirement, the Texas Instruments TPS61220 was used as a low input voltage step-up converter. From the evaluated result, the achievable incident power of the rectenna at 926mV to operate Zigbee can be obtained within a distance of 12m.

Z-Source Inverter with SiC Power Semiconductor Devices for Fuel Cell Vehicle Applications

  • Aghdam, M. Ghasem Hosseini
    • Journal of Power Electronics
    • /
    • 제11권4호
    • /
    • pp.606-611
    • /
    • 2011
  • Power electronics is a key technology for electric, hybrid, plug-in hybrid, and fuel cell vehicles. Typical power electronics converters used in electric drive vehicles include dc/dc converters, inverters, and battery chargers. New semiconductor materials such as silicon carbide (SiC) and novel topologies such as the Z-source inverter (ZSI) have a great deal of potential to improve the overall performance of these vehicles. In this paper, a Z-source inverter for fuel cell vehicle application is examined under three different scenarios. 1. a ZSI with Si IGBT modules, 2. a ZSI with hybrid modules, Si IGBTs/SiC Schottky diodes, and 3. a ZSI with SiC MOSFETs/SiC Schottky diodes. Then, a comparison of the three scenarios is conducted. Conduction loss, switching loss, reverse recovery loss, and efficiency are considered for comparison. A conclusion is drawn that the SiC devices can improve the inverter and inverter-motor efficiency, and reduce the system size and cost due to the low loss properties of SiC devices. A comparison between a ZSI and traditional PWM inverters with SiC devices is also presented in this paper. Based on this comparison, the Z-source inverter produces the highest efficiency.

차세대 파워디바이스 SiC/GaN의 산업화 및 학술연구동향 (Commercialization and Research Trends of Next Generation Power Devices SiC/GaN)

  • 조만;구영덕
    • 에너지공학
    • /
    • 제22권1호
    • /
    • pp.58-81
    • /
    • 2013
  • 탄화규소(SiC)나 질화갈륨(GaN)과 와이드갭 반도체를 이용한 전력소자의 생산기술이 크게 발전하여 그간 널리 사용되어 온 실리콘(Si) 전력소자와 비교하여 작동전압, 스위칭 속도 및 on-저항 등이 크게 향상되어 몇 개 기업은 제품화를 시작하였다. 내압 등 기술적 과제 등을극복하여 산업화를 하고자하는 움직임을 소개하고 아울러 연구동향도 분석한다.

PSS/E - Matlab Simulink/SimPower 간 순시치 시뮬레이션 비교에 관한 연구 (Study on comparisons between PSS/E and Matlab Simulink/SimPower Result on network system data)

  • 유연태;김기석;이창근;장길수
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2015년도 제46회 하계학술대회
    • /
    • pp.249-250
    • /
    • 2015
  • Technological advance of power elcetronic devices using semiconductor switches in last several decades, invoke the increase of switching devices' penetration in the system like STATCOM or HVDC and also, increase the difficulty to adjust switching characteristics in the virtual simulating configuration, which are not capable of reflect the detailed phenomena. To investigate harmful effect of switching devices into the grid, detailed modeling of power electronic devices are necessary, and the first step for entire grid modelling is simulate power system in time domain model. In this paper, simple two bus system with synchronous generator and infinite bus on the other side has been compromised in two simulation environment, using PSS/E and Matlab/Simulink. Comparing the result of two simulation result will give answers to the fundamental difference between two type of simulation environment.

  • PDF

4.5kV/1.5kA급 IGCT 설계 및 특성분석 (Design of 4.5kV/1.5kA IGCT)

  • 김형우;김상철;서길수;김은동
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2003년도 하계학술대회 논문집 Vol.4 No.1
    • /
    • pp.357-360
    • /
    • 2003
  • In this paper, we designed 4.5kV/1.5kA IGCT devices. GCT thyristor has many superior characteristics compared with GTO thyristor, for examples; snubberless turn-off capability, short storage time, high turn-on capability, small turn-off gate charge and low total power loss of the application system containing device and peripheral parts such as anode reactor and snubber capacitance. In this paper we designed GCT thyristor devices, and analyzed static and dynamic characteristics of GCT thyristor depending on the minority carrier lifetime, n-base thickness and doping concentration of n-base region, respectively. Especially, turn-on and turn-off characteristics are very important characteristics for GCT thyristor devices. So, we considered above characteristic for design and analysis of GCT devices.

  • PDF