DOI QR코드

DOI QR Code

Software Engineering Principles for the Development of Power-Efficient Mobile IoT Devices

파워 효율이 높은 모바일 IoT 단말 개발을 위한 소프트웨어 공학 원칙

  • 이혜선 (한국전자통신연구원 IoT융합연구부) ;
  • 이강복 (한국전자통신연구원 IoT융합연구부) ;
  • 방효찬 (한국전자통신연구원 IoT융합연구부)
  • Received : 2015.09.01
  • Accepted : 2015.10.13
  • Published : 2015.12.15

Abstract

An Internet of Things (IoT) is a system where various "things" are connected to each other via a wired/wireless network, and where information is gathered, processed, and interchanged/shared. One of the important actors in IoT is a mobile IoT device (such as a smartphone or tablet). These devices tend to consume a large amount of power in order to provide various high performance application services; however, as the devices cannot be supplied with power all the time, efficient power management is necessary. Power management of mobile IoT devices involves complex relationships between various entities such as application processors (APs), HW modules inside/outside AP, operating systems, mobile IoT platforms, and applications. In order to develop power-efficient mobile IoT devices, a method is needed to systematically analyze these relationships and manage power based on a clear understanding of them. To address this problem, software engineering principles for the development of power-efficient mobile IoT devices are presented in this paper. The feasibility of the proposed principles have been validated in the domain of smartphone camera power management.

다양한 사물이 유무선 네트워크를 통해 연결되어 정보를 수집, 처리, 교환/공유하는 사물인터넷(IoT) 환경에서 대표적인 역할을 하는 것이 스마트폰, 태블릿과 같은 모바일 IoT 단말이다. 이 단말은 고성능 어플리케이션 서비스를 제공하기 위해 파워 소비량이 많은 편이지만 전원을 상시 공급할 수 없기 때문에 효율적으로 파워를 관리하는 것이 중요하다. 모바일 IoT 단말의 파워 소비에는 어플리케이션 프로세서(AP), AP 내/외부 하드웨어 모듈, 운영체제, 모바일 IoT 플랫폼, 어플리케이션 등 다양한 요소가 복잡하게 얽혀 있다. 따라서 파워 효율이 높은 모바일 IoT 단말을 개발하기 위해서는 이 관계를 체계적으로 파악하고 이를 바탕으로 파워 관리를 할 수 있도록 하는 방법이 필요하다. 이를 해결하기 위해 본 논문에서는 파워 효율이 높은 모바일 IoT 단말 개발을 위한 소프트웨어 공학적 원칙을 소개한다. 제안하는 원칙은 스마트폰의 카메라 서비스 파워 관리 개발에 적용하여 검증하였다.

Keywords

Acknowledgement

Grant : Infraless 보행항법 기반 증강인지 커넥티드 헬멧 시스템 기술 개발

Supported by : ETRI

References

  1. J.A. Stankovic, "When sensor and actuator networks cover the world," ETRI Journal, Vol. 30, No. 5, pp. 627- 633, 2008. https://doi.org/10.4218/etrij.08.1308.0099
  2. NabaztagLives. [Online]. Available: http://www.nabaztaglives.com/
  3. SmartThings. [Online]. Available: http://www.smartthings.com/
  4. J. Swetina, et al., "Toward a standardized common m2m service layer platform: Introduction to onem2m," IEEE Wireless Communications, Vol. 21, No. 3, pp. 20-26, 2014. https://doi.org/10.1109/MWC.2014.6845045
  5. Allseen Alliance, AllJoyn. [Online]. Available: https://allseenalliance.org/
  6. OIC, IoTivity. [Online]. Available: https://www.iotivity.org/
  7. D.Y. Kim, et al., "A Framework for Effectively Managing Heterogeneity of IoT Devices," Journal of KIISE: Software and Applications, Vol. 41, No. 5, pp. 353-366, May 2014. (in Korean)
  8. L. Sanchez, et al., "SmartSantander: IoT experimentation over a smart city testbed. Computer Networks," Vol. 61, pp. 217-238, 2014. https://doi.org/10.1016/j.bjp.2013.12.020
  9. A.P. Castellani, et al., "Architecture and protocols for the internet of things: A case study," Proc. of the 8th IEEE International Conference on Pervasive Computing and Communications Workshops, pp. 678-683, 2010.
  10. S.K. Datta, et al., "Android power management: Current and future trends," Proc. of the 1st Workshop on Enabling Technologies for Smartphone and Internet of Things, pp. 48-53, 2012.
  11. A. Carroll, and G. Heiser, "An Analysis of Power Consumption in a Smartphone," Proc. of the USENIX annual technical conference, pp. 1-14, 2010.
  12. V. Pallipadi and A. Starikovskiy, "The ondemand governor," Proc. of the Linux Symposium, Vol. 2, pp. 215-230, 2006.
  13. S.K. Datta, et al., "Android power management: Current and future trends," Proc. of the 1st IEEE Workshop on Enabling Technologies for Smartphone and Internet of Things, pp. 48-53, 2012.
  14. GO Battery Saver and Power Widget. [Online]. Available: https://play.google.com/store/apps/details?id=com. gau.go.launcherex.gowidget.gopowermaster&hl=en/
  15. Y.G. Kim, et al., "A Novel GPU Power Model for Accurate Smartphone Power Breakdown," ETRI Journal, Vol. 37, No. 1, pp. 157-164, Feb. 2015. https://doi.org/10.4218/etrij.14.0113.1411
  16. K.C. Kang, et al., "Feature-oriented domain analysis (FODA) feasibility study," Technical Report, CMU/ SEI-90-TR-21, CMU SEI, 1990.
  17. K.C. Kang, et al., "3d virtual prototyping of home service robots using asadal/obj," Proc. of the International Conference on Robotics and Automation, pp. 2903-2908, 2005.
  18. H. Lee, et al., "VULCAN: Architecture-model-based workbench for product line engineering," Proc. of the 16th International Software Product Line Conference, Vol. 2, pp. 260-264, 2012.
  19. J.S. Yang and K.C. Kang, "A Workbench based on Eclipse Platform for Feature-Oriented Product Line Software Development," Journal of KIISE: Computing Practices and Letters, Vol. 19, No. 1, pp. 31-35, Jan. 2013. (in Korean)
  20. H. Lee and K.C. Kang, "Feature-based modeling and simulation of AP camera power management: A feasibility study," Technical Paper (Jan. 24, 2014). Software R&D Center, DS Department, Samsung Electronics Co Ltd., 2014.