• Title/Summary/Keyword: Power comparator

Search Result 198, Processing Time 0.03 seconds

High-Speed BiCMOS Comparator

  • Jirawath, Parnklang;Wanchana, Thongtungsai
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.510-510
    • /
    • 2000
  • This paper introduces the design of BiCMOS latched comparator circuit for high-speed system application, which can be used in data conversion, instrumentation, communication system etc. By exploiting the advantage technology of the combination of both the bipolar transistor and the CMOS transistor devices. The comparator circuit includes an input stage that combines MOS sampling with a bipolar regenerative amplifier. The resistive load of conventional current-steering comparator is replaced by a load, which is made by a NMOS transistor. The advantage of design and PSPICE simulation of BiCMOS latched comparator are the circuit will obtain wide bandwidth with lowest power consumption at a single supply voltage. All the characteristics of the proposed BiCMOS latched comparator circuit is carried out by simulation program.

  • PDF

Design of ZQ Calibration Circuit using Time domain Comparator (시간영역 비교기를 이용한 ZQ 보정회로 설계)

  • Lee, Sang-Hun;Lee, Won-Young
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.417-422
    • /
    • 2021
  • In this paper, a ZQ calibration using a time domain comparator is proposed. The proposed comparator is designed based on VCO, and an additional clock generator is used to reduce power consumption. By using the proposed comparator, the reference voltage and the PAD voltage were compared with a low 1 LSB voltage, so that the additional offset cancelation process could be omitted. The proposed time domain comparator-based ZQ calibration circuit was designed with a 65nm CMOS process with 1.05V and 0.5V supply voltages. The proposed clock generator reduces power consumption by 37% compared to a single time domain comparator, and the proposed ZQ calibration increases the mask margin by up to 67.4%.

Design and Optimization of Full Comparator Based on Quantum-Dot Cellular Automata

  • Hayati, Mohsen;Rezaei, Abbas
    • ETRI Journal
    • /
    • v.34 no.2
    • /
    • pp.284-287
    • /
    • 2012
  • Quantum-dot cellular automata (QCA) is one of the few alternative computing platforms that has the potential to be a promising technology because of higher speed, smaller size, and lower power consumption in comparison with CMOS technology. This letter proposes an optimized full comparator for implementation in QCA. The proposed design is compared with previous works in terms of complexity, area, and delay. In comparison with the best previous full comparator, our design has 64% and 85% improvement in cell count and area, respectively. Also, it is implemented with only one clock cycle. The obtained results show that our full comparator is more efficient in terms of cell count, complexity, area, and delay compared to the previous designs. Therefore, this structure can be simply used in designing QCA-based circuits.

Development of the precision AC/DC power measuring system on the basis of thermal converters (열전형변환기를 사용한 정밀 교류직류전력측정장치 개발)

  • 박영태;장석명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.45 no.1
    • /
    • pp.9-13
    • /
    • 1996
  • The high precision of electrical power and energy measurements with wide range of frequency and power factor can be achieved by using the thermo-electrical power comparators. The paper describes the development of a precision power measuring system by using a ac/dc power comparator for measurement of power. Based on a thermal principle, the instrument performs ac-dc transfer for ac power measurements in the range of currents from 0 to 5 $A_{ms}$ , voltages from 0 to 240 $V_{ms}$ , power factors from 0 to 1 and frequencies from 0 to 1000 Hz. Two thermal converters with two heater are used in the functional element of the comparators. The ac-dc transfer accuracy is better than 20 ppm at unity power factor and better than 50 ppm at 0.5 power factor. (author). 8 refs., 5 figs., 3 tabs.

  • PDF

An Automatic Power Control Circuit suitable for High Speed Burst-mode optical transmitters (고속 버스트 모드 광 송신기에 적합한 자동 전력 제어 회로)

  • Ki, Hyeon-Cheol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.11 s.353
    • /
    • pp.98-104
    • /
    • 2006
  • The conventional burst-mode APC(Automatic Power Control) circuit had an effective structure that was suitable for a low power consumption and a monolithic chip. However, as data rate was increased, it caused errors due to the effect of the zero density. In this paper, we invented a new structured peak-comparator which could compensate the unbalance of the injected currents using double gated MOS and MOS diode. And we proposed a new burst-mode APC adopting it. The new peak-comparator in the proposed APC was very robust to zero density variations maintaining the correct decision point of the current comparison at high data rate. It was also suitable for a low power consumption and a monolithic chip due to lack of large capacitors.

A 1V 200-kS/s 10-bit Successive Approximation ADC

  • Uh, Ji-Hun;Kim, Sang-Hun;Jang, Young-Chan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.05a
    • /
    • pp.483-485
    • /
    • 2010
  • A 200kS/s 10-bit successive approximation(SA) ADC with a rail-to-rail input range is proposed. The proposed SA ADC consists of DAC, comparator, and successive approximation register(SAR) logic. The folded-type capacitor DAC with the boosted NMOS switches is used to reduce the power consumption and chip area. Also, the time-domain comparator which uses a fully differential voltage-to-time converter improves the PSRR and CMRR. The SAR logic uses the flip-flop with a half valid window, it results in the reduction of the power consumption and chip area. The proposed SA ADC is designed by using a $0.18{\mu}m$ CMOS process with 1V supply.

  • PDF

CMOS Binary Image Sensor with Gate/Body-Tied PMOSFET-Type Photodetector for Low-Power and Low-Noise Operation

  • Lee, Junwoo;Choi, Byoung-Soo;Seong, Donghyun;Lee, Jewon;Kim, Sang-Hwan;Lee, Jimin;Shin, Jang-Kyoo;Choi, Pyung
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.362-367
    • /
    • 2018
  • A complementary metal oxide semiconductor (CMOS) binary image sensor is proposed for low-power and low-noise operation. The proposed binary image sensor has the advantages of reduced power consumption and fixed pattern noise (FPN). A gate/body-tied (GBT) p-channel metal-oxide-semiconductor field-effect transistor (PMOSFET)-type photodetector is used as the proposed CMOS binary image sensor. The GBT PMOSFET-type photodetector has a floating gate that amplifies the photocurrent generated by incident light. Therefore, the sensitivity of the GBT PMOSFET-type photodetector is higher than that of other photodetectors. The proposed CMOS binary image sensor consists of a pixel array with $394(H){\times}250(V)$ pixels, scanners, bias circuits, and column parallel readout circuits for binary image processing. The proposed CMOS binary image sensor was analyzed by simulation. Using the dynamic comparator, a power consumption reduction of approximately 99.7% was achieved, and this performance was verified by the simulation by comparing the results with those of a two-stage comparator. Also, it was confirmed using simulation that the FPN of the proposed CMOS binary image sensor was successfully reduced by use of the double sampling process.

CMI Tolerant Readout IC for Two-Electrode ECG Recording (공통-모드 간섭 (CMI)에 강인한 2-전극 기반 심전도 계측 회로)

  • Sanggyun Kang;Kyeongsik Nam;Hyoungho Ko
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.432-440
    • /
    • 2023
  • This study introduces an efficient readout circuit designed for two-electrode electrocardiogram (ECG) recording, characterized by its low-noise and low-power consumption attributes. Unlike its three-electrode counterpart, the two-electrode ECG is susceptible to common-mode interference (CMI), causing signal distortion. To counter this, the proposed circuit integrates a common-mode charge pump (CMCP) with a window comparator, allowing for a CMI tolerance of up to 20 VPP. The CMCP design prevents the activation of electrostatic discharge (ESD) diodes and becomes operational only when CMI surpasses the predetermined range set by the window comparator. This ensures power efficiency and minimizes intermodulation distortion (IMD) arising from switching noise. To maintain ECG signal accuracy, the circuit employs a chopper-stabilized instrumentation amplifier (IA) for low-noise attributes, and to achieve high input impedance, it incorporates a floating high-pass filter (HPF) and a current-feedback instrumentation amplifier (CFIA). This comprehensive design integrates various components, including a QRS peak detector and serial peripheral interface (SPI), into a single 0.18-㎛ CMOS chip occupying 0.54 mm2. Experimental evaluations showed a 0.59 µVRMS noise level within a 1-100 Hz bandwidth and a power draw of 23.83 µW at 1.8 V.

Development of a Calculable Potential Transformer with Wide Ratio Error (광범위 비오차를 갖는 계산형 전압변성기의 개발)

  • Kwon, Sung-Won;Jung, Jae-Kap;Lee, Sang-Hwa;Kim, Myung-Soo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1017-1021
    • /
    • 2008
  • A calculable potential transformer(PT) with nominal ratio error in wide range of -10% to +10% has been developed on basis of theoretical calculation of ratio error by the number of windings. The developed PT can be used to evaluate the linearity and accuracy of the PT comparator by comparing both the theoretical and experimental values of the PT which have exactly same ratio errors in nominal and calculated values. The PT has been applied for calibration and correction of the PT comparator up to wide ratio error range of -10% to +10%. This portable PT is very convenient to carry to the power industry for the on-site calibration of the PT comparator.

Measurement of Solar Cell Using LED-based Differential Spectral Responsivity Comparator under High Background Irradiance

  • Zaid, Ghufron;Park, Seong-Chong;Lee, Dong-Hoon;Park, Seung-Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.293-294
    • /
    • 2009
  • The spectral responsivity of solar cells has been measured under high background irradiance using an LED-based differential spectral responsivity Comparator (DSR-C). The comparator developed is fully automated and has some advantages: It does not need a chopper to modulate the light. Unlike the conventional method, it does not require a monochromator to select wavelength. It covers a wavelength range up to 1200 nm. The wavelength range of the comparator is limited by the spectral power distribution of the LEDs and the spectral responsivity of the standard detector. An active temperature control was utilized to meet the specified standard conditions of solar cell test. This work shows the effect of different levels of background irradiance on the spectral responsivity and the importance of same background irradiance for solar cell test as specified by the corresponding standard.

  • PDF