DOI QR코드

DOI QR Code

공통-모드 간섭 (CMI)에 강인한 2-전극 기반 심전도 계측 회로

CMI Tolerant Readout IC for Two-Electrode ECG Recording

  • 강상균 (충남대학교 전자공학과) ;
  • 남경식 (충남대학교 전자공학과) ;
  • 고형호 (충남대학교 전자공학과)
  • Sanggyun Kang (Department of Electronics Engineering, Chungnam National University) ;
  • Kyeongsik Nam (Department of Electronics Engineering, Chungnam National University) ;
  • Hyoungho Ko (Department of Electronics Engineering, Chungnam National University)
  • 투고 : 2023.09.22
  • 심사 : 2023.10.31
  • 발행 : 2023.11.30

초록

This study introduces an efficient readout circuit designed for two-electrode electrocardiogram (ECG) recording, characterized by its low-noise and low-power consumption attributes. Unlike its three-electrode counterpart, the two-electrode ECG is susceptible to common-mode interference (CMI), causing signal distortion. To counter this, the proposed circuit integrates a common-mode charge pump (CMCP) with a window comparator, allowing for a CMI tolerance of up to 20 VPP. The CMCP design prevents the activation of electrostatic discharge (ESD) diodes and becomes operational only when CMI surpasses the predetermined range set by the window comparator. This ensures power efficiency and minimizes intermodulation distortion (IMD) arising from switching noise. To maintain ECG signal accuracy, the circuit employs a chopper-stabilized instrumentation amplifier (IA) for low-noise attributes, and to achieve high input impedance, it incorporates a floating high-pass filter (HPF) and a current-feedback instrumentation amplifier (CFIA). This comprehensive design integrates various components, including a QRS peak detector and serial peripheral interface (SPI), into a single 0.18-㎛ CMOS chip occupying 0.54 mm2. Experimental evaluations showed a 0.59 µVRMS noise level within a 1-100 Hz bandwidth and a power draw of 23.83 µW at 1.8 V.

키워드

과제정보

이 연구는 충남대학교 학술연구비에 의해 지원되었음.

참고문헌

  1. D. De Bacquer, G. De Backer, M. Kornitzer, and H. Blackburn, "Prognostic value of ECG findings for total, cardiovascular disease, and coronary heart disease death in men and women", Heart, Vol. 80, No. 6, pp. 570-577, 1998. https://doi.org/10.1136/hrt.80.6.570
  2. A. Bansal and R. Joshi, "Portable out-of-hospital electrocardiography: A review of current technologies", Journal of arrhythmia, Vol. 34, No. 2, pp. 129-138, 2018. https://doi.org/10.1002/joa3.12035
  3. B. B. Winter and J. G. Webster, "Driven-right-leg circuit design", IEEE Trans. Biomed. Eng., Vol. BME-30, No. 1, pp. 62-66, 1983. https://doi.org/10.1109/TBME.1983.325168
  4. A. Wong, K.-P. Pun, Y.-T. Zhang, and C.-S. Choy, "An ECG measurement IC using driven-right-leg circuit", proc. of 2006 IEEE Int. Symp. Circuits. Syst. (ISCAS), pp. 345-348, Kos, Greece, 2016.
  5. N. Koo and S. Cho, "A 24.8- µW biopotential amplifier tolerant to 15-VPP Common-mode interference for two-electrode ECG recording in 180-nm CMOS", IEEE J. SolidState Circuits, Vol. 56, No. 2, pp. 591-600, 2020. https://doi.org/10.1109/JSSC.2020.3005768
  6. N. Koo and S. Cho, "22.4 A 27.8 µW Biopotential Amplifier Tolerant to 30Vpp Common-Mode Interference for Two-Electrode ECG Recording in 0.18㎛ CMOS", Proc. of 2019 IEEE Int. Solid- State Circuits Conf. - (ISSCC), pp. 366-368, San Francisco, USA, 2019.
  7. H. Kim, K. Han, J. Kim, D. You, H. Heo, Y. Kwon, C.-Y. Kim, H.-D. Lee, and H. Ko, "Chopper-Stabilized Low-Noise Multipath Operational Amplifier with Dual Ripple Rejection Loops", IEEE Trans. Circuits. Syst. II: Express Briefs, Vol. 67, No. 11, pp. 2427-2431, 2020.
  8. Q. Fan, F. Sebastiano, H. Huijsing, and K. Makinwa, "A 1.8 µW 1µV-offset capacitively-coupled chopper instrumentation amplifier in 65nm CMOS", Proc. of 2010 Proc. ESSCIRC, pp. 170-173, Seville, Spain, 2010.
  9. Q. Fan and K. Makinwa, "Capacitively-coupled Chopper Instrumentation Amplifiers: An Overview", Proc. of 2018 IEEE SENSORS, pp. 1-4, New Delhi, India, 2018.
  10. K. Nam, H. Kim, Y. Kwon, G. Choi, T. Kim, C. Kim, D. Cho, J. Lee, and H. Ko, "A Four-Channel Low-noise readout IC for air flow measurement using hot wire anemometer in 0.18 ㎛ CMOS technology", Sensors, Vol. 21, No. 14, pp. 4694(1)-4694(16), 2021. https://doi.org/10.1109/JSEN.2020.3039123
  11. R. Wu, K. A. A. Makinwa, and J. H. Huijsing, "The design of a chopped current-feedback instrumentation amplifier", Proc. of 2008 IEEE Int. Symp. Circuits. Syst. (ISCAS), pp. 2466-2469, Seattle, USA, 2008.
  12. R. Wu, K. A. A. Makinwa, and J. H. Huijsing, "A chopper current-feedback instrumentation amplifier with a 1 mHz 1/f noise corner and an AC-coupled ripple reduction loop", IEEE J. Solid-State Circuits, Vol. 44, No. 12, pp. 3232-3243, 2009. https://doi.org/10.1109/JSSC.2009.2032710
  13. H. Kim, S. Kim, N. Van Helleputte, A. Artes, M. Konijnenburg, J. Huisken, C. Van Hoof, and R. F. Yazicioglu, "A configurable and low-power mixed signal SoC for portable ECG monitoring applications", IEEE trans. Biomed. Circuits. Syst., Vol. 8, No. 2, pp. 257-267, 2013. https://doi.org/10.1109/TBCAS.2013.2260159
  14. Y. M. Chi, T. -P. Jung, and G. Cauwenberghs, "Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review", in IEEE Rev. Biomed. Eng., Vol. 3, pp. 106-119, 2010. https://doi.org/10.1109/RBME.2010.2084078
  15. M. Chen, I. D. Castro, Q. Lin, T. Torfs, F. Tavernier, C. Van Hoof, and N. Van Helleputte, "A 400GΩ Input-Impedance, 220MVpp Linear-Input-Range, 2.8Vpp CM-Interference-Tolerant Active Electrode for Non-Contact Capacitively Coupled ECG Acquisition", Proc. of 2018 IEEE Symp. VLSI Circuits, pp. 129-130, Honolulu, USA, 2018.
  16. X. Zhou, Q. Li, S. Kilsgaard, F. Moradi, S. L. Kappel, and P. Kidmose, "A wearable ear-EEG recording system based on dry-contact active electrodes", Proc. of 2016 IEEE Symp. VLSI Circuits (VLSI-Circuits), pp. 1-2, Honolulu, USA, 2016.