• Title/Summary/Keyword: Power Module

Search Result 2,686, Processing Time 0.035 seconds

Development of Double Rotation C-Scanning System and Program for Under-Sodium Viewing of Sodium-Cooled Fast Reactor (소듐냉각고속로 소듐 내부 가시화를 위한 이중회전구동 C-스캔 시스템 및 프로그램 개발)

  • Joo, Young-Sang;Bae, Jin-Ho;Park, Chang-Gyu;Lee, Jae-Han;Kim, Jong-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.338-344
    • /
    • 2010
  • A double rotation C-scanning system and a software program Under-Sodium MultiVIEW have been developed for the under-sodium viewing of a reactor core and in-vessel structures of a sodium-cooled fast reactor KALIMER-600. Double rotation C-scanning system has been designed and manufactured by the reproduction of double rotation plug of a reactor head in KALIMER-600. Hardware system which consists of a double rotating scanner, ultrasonic waveguide sensors, a high power ultrasonic pulser-receiver, a scanner driving module and a multi channel A/D board have been constructed. The functions of scanner control, image mapping and signal processing of Under-Sodium MultiVIEW program have been implemented by using a LabVIEW graphical programming language. The performance of Under-Sodium MultiVIEW program was verified by a double rotation C-scanning test in water.

Design and Implementation of Customized Protocol and Smartphone App for the All-in-One Sensor Device

  • Bang, Jong-ho;Lee, Song-Yeon;Paik, Jong-Ho
    • Journal of Internet Computing and Services
    • /
    • v.19 no.1
    • /
    • pp.19-26
    • /
    • 2018
  • Social issues for environmental pollution are continuously increasing globally. Especially, Users require services to measure environmental factors in indoor and outdoor and manage related data effectively and conveniently. According to this demand, sensors that can measure environmental factors in indoor and outdoor have been developed. However, since one sensor is composed of independent module, the interface of output data from each sensor is different. To solve the problem, we propose a customized protocol for low-power short-range wireless communication between smartphone using Bluetooth and All-in-One sensor device board and analyze the performance of the proposed customized protocol by developing program for performance verification of interface with user smartphone through Bluetooth. In addition, we implement a smartphone application using proposed protocol.

Designed of Intelligent Solar Tracking System using Fuzzy State-Space Partitioning Method (퍼지 상태 공간 분할 기법을 이용한 지능형 태양광 추적시스템 설계)

  • Kim, Gwan-Hyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2072-2078
    • /
    • 2011
  • In photovoltaic(PV) system, for obtaining maximum efficiency of solar power systems, the solar tracking system must be controlled to match position of the sun. In this paper, we design the solar tracking system to track movement of the sun using CdS sensor modules and to determine direction of the sun under shadow of directions. In addition, for an intelligent computation in tracking of the sun, a fuzzy controller is allocated to space avaliable for splitting area of fuzzy part for the fuzzy input space(grid-type fuzzy partition) in which a fuzzy grid partition divides fuzzy rules bases. As well, a simple model of solar tracking system is designed by two-axis motor control systems and the 8-direction sensor module that can measure shadow from CdS sensor modules by matching of axis of CdS modules and PV panels. We demonstrate this systems is effective for fixed location and moving vessels and our fuzzy controller can track the satisfactorily.

The Development of Modularized Post Processing GPS Software Receiving Platform using MATLAB Simulink

  • Kim, Ghang-Ho;So, Hyoung-Min;Jeon, Sang-Hoon;Kee, Chang-Don;Cho, Young-Su;Choi, Wansik
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.2
    • /
    • pp.121-128
    • /
    • 2008
  • Modularized GPS software defined radio (SDR) has many advantages of applying and modifying algorithm. Hardware based GPS receiver uses many hardware parts (such as RF front, correlators, CPU and other peripherals) that process tracked signal and navigation data to calculate user position, while SDR uses software modules, which run on general purpose CPU platform or embedded DSP. SDR does not have to change hardware part and is not limited by hardware capability when new processing algorithm is applied. The weakness of SDR is that software correlation takes lots of processing time. However, in these days the evolution of processing power of MPU and DSP leads the competitiveness of SDR against the hardware GPS receiver. This paper shows a study of modulization of GPS software platform and it presents development of the GNSS software platform using MATLAB Simulink™. We focus on post processing SDR platform which is usually adapted in research area. The main functions of SDR are GPS signal acquisition, signal tracking, decoding navigation data and calculating stand alone user position from stored data that was down converted and sampled intermediate frequency (IF) data. Each module of SDR platform is categorized by function for applicability for applying for other frequency and GPS signal easily. The developed software platform is tested using stored data which is down-converted and sampled IF data file. The test results present that the software platform calculates user position properly.

An Energy Harvesting Aware Routing Algorithm for Hierarchical Clustering Wireless Sensor Networks

  • Tang, Chaowei;Tan, Qian;Han, Yanni;An, Wei;Li, Haibo;Tang, Hui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.504-521
    • /
    • 2016
  • Recently, energy harvesting technology has been integrated into wireless sensor networks to ameliorate the nodes' energy limitation problem. In theory, the wireless sensor node equipped with an energy harvesting module can work permanently until hardware failures happen. However, due to the change of power supply, the traditional hierarchical network routing protocol can not be effectively adopted in energy harvesting wireless sensor networks. In this paper, we improve the Low-Energy Adaptive Clustering Hierarchy (LEACH) protocol to make it suitable for the energy harvesting wireless sensor networks. Specifically, the cluster heads are selected according to the estimation of nodes' harvested energy and consumed energy. Preference is given to the nodes with high harvested energy while taking the energy consumption rate into account. The utilization of harvested energy is mathematically formulated as a max-min optimization problem which maximizes the minimum energy conservation of each node. We have proved that maximizing the minimum energy conservation is an NP-hard problem theoretically. Thus, a polynomial time algorithm has been proposed to derive the near-optimal performance. Extensive simulation results show that our proposed routing scheme outperforms previous works in terms of energy conservation and balanced distribution.

Characterization of a Wavelength-Tunable Fiber Laser Based on a Polymer Waveguide Bragg Grating Wavelength Filter (폴리머 도파로 브라그 격자를 이용한 단일 파장 가변 광섬유 레이저의 출력 특성 연구)

  • Choi, Byeong Kwon;Byun, Jong Hyun;Seo, Jun Gyu;Lee, Hak Kyu;Jeon, Min Yong
    • Korean Journal of Optics and Photonics
    • /
    • v.26 no.6
    • /
    • pp.306-311
    • /
    • 2015
  • We report the characteristics of a single-wavelength-tunable fiber laser using a polymer waveguide Bragg grating (PWBG) wavelength filter. The output of the laser depends on environmental conditions, such as temperature and polarization states in the laser cavity. Wavelength tuning can be achieved, about 16.29 nm from 1548.24 nm to 1531.95 nm, according to the electric power applied to the PWBG wavelength filter. The achieved efficiency slope is about -0.16 nm/mW. A side-mode suppression ratio (SMSR) of more than 35 dB can be obtained by adjusting the polarization state in the laser cavity. A stable wavelength-tunable fiber laser can be achieved using the PWBG wavelength filter with a TEC module and a polarization-maintaining fiber.

Femtosecond-Laser Micromachining of a Thermal Blocking Trench for an Enhanced PLC Variable Optical Attenuator (펨토초 레이저를 이용한 PLC 가변광감쇠기 특성 향상을 위한 열간섭 차단 트렌치 가공 기술)

  • Yoo, Dongyoon;Choi, Hun-Kook;Sohn, Ik-Bu;Kim, Youngsic;Kim, Suyong;Kim, Wanchun;Kim, Jinbong
    • Korean Journal of Optics and Photonics
    • /
    • v.27 no.4
    • /
    • pp.127-132
    • /
    • 2016
  • In this paper, a trench structure was fabricated by femtosecond-laser machining to eliminate thermal crosstalk in a multichannel variable optical attenuator (VOA), to prevent decreasing attenuation efficiency of the VOA. Trenches of a variety of widths and depths were fabricated on the VOA chips by femtosecond-laser processing. After the machining, attenuation according to current change was observed in each VOA chip module with trenches. As a result, we could observe high responsivity of attenuation and low power consumption, and that the heat of each channel barely influenced other channels.

Heat Spreading Properties of CVD Diamond Coated Al Heat Sink (CVD 다이아몬드가 코팅된 알루미늄 방열판의 방열 특성)

  • Yoon, Min Young;Im, Jong Hwan;Kang, Chan Hyoung
    • Journal of the Korean institute of surface engineering
    • /
    • v.48 no.6
    • /
    • pp.297-302
    • /
    • 2015
  • Nanocrystalline diamond(NCD) coated aluminium plates were prepared and applied as heat sinks for LED modules. NCD films were deposited on 1 mm thick Al plates for times of 2 - 10 h in a microwave plasma chemical vapor deposition reactor. Deposition parameters were the microwave power of 1.2 kW, the working pressure of 90 Torr, the $CH_4/Ar$ gas ratio of 2/200 sccm. In order to enhance diamond nucleation, DC bias voltage of -90 V was applied to the substrate during deposition without external heating. NCD film was identified by X-ray diffraction and Raman spectroscopy. The Al plates with about 300 nm thick NCD film were attached to LED modules and thermal analysis was carried out using Thermal Transient Tester (T3ster) in a still air box. Thermal resistance of the module with NCD/Al plate was 3.88 K/W while that with Al plate was 5.55 K/W. The smaller the thermal resistance, the better the heat emission. From structure function analysis, the differences between junction and ambient temperatures were $12.1^{\circ}C$ for NCD/Al plate and $15.5^{\circ}C$ for Al plate. The hot spot size of infrared images was larger on NCD/Al than Al plate for a given period of LED operation. In conclusion, NCD coated Al plate exhibited better thermal spreading performance than conventional Al heat sink.

A Study on Development of Industrial Engine Monitoring System Using Smart Phone Application (스마트폰 앱을 이용한 산업용 엔진의 모니터링 시스템 개발에 관한 연구)

  • Jeong, C.S.;Kim, Y.S.;Jeong, Y.M.;Kho, J.H.;Jeong, K.S.;Lee, H.S.;Yang, S.Y.
    • Journal of Drive and Control
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2013
  • In this study, a wire/wireless communication system transmitting the operation data of engine from the ER (Engine Room) to the engine controller of ECR(Engine Control Room) has been developed through the communication of ISM(Industrial Science Medical) Band for the test operation environment improvement of medium speed engine. This wire/wireless communication system is composed of the RTU (Remote Terminal Unit) gathering and transmitting engine data as well as the MCU (Master Control Unit) receiving engine status information from the RTU to be sent to the engine controller (PLC). Through this study, a trial product of RTU and MCU has been manufactured. A test bench that has made temperature, pressure and pick-up sensor into a module for the local test of prototype was produced a test bench. In addition, at the same time save the data to a Web server and the smart phone real-time monitoring system has been developed using Wi-Fi communications. The ultimate objective of this study is to develop a wireless smart phone monitoring system of engine for the operator of engine to be able to monitor and control engine status even from the outside of engine room and control room based on this study.

Attitude Learning of Swarm Robot System using Bluetooth Communication Network (블루투스 통신 네트워크를 이용한 군집합로봇의 행동학습)

  • Jin, Hyun-Soo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.3
    • /
    • pp.137-143
    • /
    • 2009
  • Through the development of techniques, robots are becomes smaller, and many of robots needed for application are greater and greater. Method of coordinating large number of autonomous robots through local interactions has becoming an important research issue in robot community. Swarm Robot System is a system that independent autonomous robots in the restricted environment infer their status from preassigned conditions and operate their jobs through the coorperation with each other. Within the SRS,a robot contains sensor part to percept the situation around them, communication part to exchange information, and actuator part to do a work. Specially, in order to cooperate with other robots, communicating with other robot is one of the essential elements. In such as Bluetooth has many adventages such as low power consumption, small size module package, and various standard procotols, it is rated as one of the efficent communcating system for autonomous robot is developed in this paper. and How to construct and what kind of procedure to develop the communicatry system for group behavior of the SRS under intelligent space is discussed in this paper.

  • PDF