DOI QR코드

DOI QR Code

Femtosecond-Laser Micromachining of a Thermal Blocking Trench for an Enhanced PLC Variable Optical Attenuator

펨토초 레이저를 이용한 PLC 가변광감쇠기 특성 향상을 위한 열간섭 차단 트렌치 가공 기술

  • Yoo, Dongyoon (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Choi, Hun-Kook (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Sohn, Ik-Bu (Advanced Photonics Research Institute, Gwangju Institute of Science and Technology) ;
  • Kim, Youngsic (Interdisciplinary Program for Photonic Engineering, Chonnam national university) ;
  • Kim, Suyong (Interdisciplinary Program for Photonic Engineering, Chonnam national university) ;
  • Kim, Wanchun (Interdisciplinary Program for Photonic Engineering, Chonnam national university) ;
  • Kim, Jinbong (Interdisciplinary Program for Photonic Engineering, Chonnam national university)
  • 유동윤 (광주과학기술원 고등광기술연구소) ;
  • 최훈국 (광주과학기술원 고등광기술연구소) ;
  • 손익부 (광주과학기술원 고등광기술연구소) ;
  • 김영식 (전남대학교, 광공학협동과정) ;
  • 김수용 (전남대학교, 광공학협동과정) ;
  • 김완춘 (전남대학교, 광공학협동과정) ;
  • 김진봉 (전남대학교, 광공학협동과정)
  • Received : 2016.05.12
  • Accepted : 2016.08.04
  • Published : 2016.08.25

Abstract

In this paper, a trench structure was fabricated by femtosecond-laser machining to eliminate thermal crosstalk in a multichannel variable optical attenuator (VOA), to prevent decreasing attenuation efficiency of the VOA. Trenches of a variety of widths and depths were fabricated on the VOA chips by femtosecond-laser processing. After the machining, attenuation according to current change was observed in each VOA chip module with trenches. As a result, we could observe high responsivity of attenuation and low power consumption, and that the heat of each channel barely influenced other channels.

본 논문에서는 다채널 가변광감쇠기에서 발생하는 열간섭 효과를 차단하여 광효율을 높이기 위하여 펨토초 레이저를 이용하여 트렌치를 가공하였다. 채널간 열간섭으로 인한 광감쇠 제어효율 하락을 막기 위하여, 가변광감쇠기 채널 사이에 펨토초 레이저로 트렌치의 폭과 깊이를 다르게 하여 가공하였고, 적용된 각 칩을 모듈화하여 전류에 따른 광감쇠율 변화를 관찰하였다. 그 결과 광감쇠를 위해 가해진 열이 주변채널에 영향을 매우 작게 미치는 것을 확인하였고, 뿐만 아니라 작은 전류에 광감쇠율이 민감하게 변화하는 것을 확인할 수 있어 효율적인 소자로서 개발 가능함을 확인하였다.

Keywords

References

  1. H. J. Lee, "Polymer Optical Devices for ROADM Optical Telecommunications," Polymer Science and Technology, 18, 159-166 (2007).
  2. Y. S. Kim, Y. C. Kim, S. Y. Kim, M. W. Lee, J. K. Pyo, and J. P. Kim, "Design of Variable Optical Attenuator based on Silica Waveguide with Polymer Filled Trench," Proc. OSK Summer Meeting 2012 (Jeju. Kumho Resort, Aug. 2012), TP-V30.
  3. G. Z. Xiao, Z. Zhang, and C. P. Grover, "A Variable Optical Attenuator Based on a Straight Polymer_Silica Hybrid Channel Waveguide," IEEE PHOTONICS TECH. LETTERS, 16, 2511-2513 (2004). https://doi.org/10.1109/LPT.2004.835634
  4. L. Wang, Q. Song, J. Wu, and A. K. Chen, "Low-power variable optical attenuator based on a hybrid SiON-polymer S-bend waveguide," Appl. Opt. 55, 969-973 (2016). https://doi.org/10.1364/AO.55.000969
  5. Y. Y. Yu, X. Q. Sun, L. T. Ji, G. B. He, X. B. Wang, Y. Ji. Yi, C. M. Chen, F. Wang, and D. M. Zhang, "The 650-nm variable optical attenuator based on polymer/silica hybrid waveguide," Chin. Phys. B 25, (2016) 054101.
  6. D. P. Yang and J. G. Kim, "A study on the characteristics of variable optical attenuators using heat insulating structures," Proc. IEIE Summer Meeting 2004, 27, 321-324 (KAIST-ICC, Daejeon, Jun. 2004)
  7. Y. Hashizume, Y. Inoue, T. Kominato, T. Shibata, M. Okuno, "Low-PDL 16-channel Variable Optical Attenuator Array using Silica-based PLC," Proc. Optical Fiber Communication Conference (Los Angeles Convention Center, Los Angeles, CA USA, Feb. 2004), WC4.
  8. Y. C. Yoo, I. K. Han, and J. I. Lee, "Optical power enhancement of superluminescent diodes utilizing trench," J. Korean Vacc. Soc. 16, 353-358 (2007). https://doi.org/10.5757/JKVS.2007.16.5.353
  9. D. M. Yeu, K. H. Kim, and S. Y. Shin, "Fabrication of a low-power 1${\time}$2 polymeric thermos-optic switch with a trench structure," Hankook Kwanghak Hoeji 14, 33-37 (2003). https://doi.org/10.3807/KJOP.2003.14.1.033
  10. I. B. Sohn, M. S. Lee, and J. Y. Chung, "Fabrication of optical splitter and passive alignment technique with a femtosecond laser," IEEE Photonic Technol. Lett. 17, 2349-2351 (2005). https://doi.org/10.1109/LPT.2005.858101
  11. H. K. Choi, D. Jung, I. B. Sohn, Y. C. Noh, Y. T. Lee, J. T Kim, and Md.S.Ahsan, "Diffraction Efficiency Enhancement of Femtosecond Laser Engraved Diffraction Gratings Using $CO_2$ Laser Polishing," J. Korean Phys. Soc. 65, 1559-1565 (2014). https://doi.org/10.3938/jkps.65.1559
  12. D. Jung, I. B. Sohn, Y. C. Noh, J. H. Kim, C. H. Kim, and H. Lee, "Laser Microfabrication of Multidirectional Side-fire Optical Fiber Tip," J. Korean Soc. Precis. Eng. 30, 1017-1022 (2013). https://doi.org/10.7736/KSPE.2013.30.10.1017
  13. S. Nikumba, Q. Chena, C. Lia, H. Reshefa, H. Y. Zhengb, H. Qiub, and D. Lowb, "Precision glass machining, drilling and profile cutting by short pulse lasers," Thin Solid Films 477, 216-221 (2005). https://doi.org/10.1016/j.tsf.2004.08.136