DOI QR코드

DOI QR Code

Characterization of a Wavelength-Tunable Fiber Laser Based on a Polymer Waveguide Bragg Grating Wavelength Filter

폴리머 도파로 브라그 격자를 이용한 단일 파장 가변 광섬유 레이저의 출력 특성 연구

  • Received : 2015.07.27
  • Accepted : 2015.10.12
  • Published : 2015.12.25

Abstract

We report the characteristics of a single-wavelength-tunable fiber laser using a polymer waveguide Bragg grating (PWBG) wavelength filter. The output of the laser depends on environmental conditions, such as temperature and polarization states in the laser cavity. Wavelength tuning can be achieved, about 16.29 nm from 1548.24 nm to 1531.95 nm, according to the electric power applied to the PWBG wavelength filter. The achieved efficiency slope is about -0.16 nm/mW. A side-mode suppression ratio (SMSR) of more than 35 dB can be obtained by adjusting the polarization state in the laser cavity. A stable wavelength-tunable fiber laser can be achieved using the PWBG wavelength filter with a TEC module and a polarization-maintaining fiber.

본 논문은 폴리머 광 도파로 기반의 브라그 격자(Polymer waveguide Bragg grating: PWBG) 파장 필터를 광섬유 레이저 공진기 내부에 삽입하여 단일 파장 가변 레이저를 구현하고, 주위 온도 및 공진기 내부의 편광 상태의 변화에 대한 출력 특성을 연구한 결과에 대해 보고한다. 레이저 공진기 내부에 있는 PWBG 파장 필터에 0 mW에서 100 mW의 전력을 인가해 주었을 때 레이저에서 발진하는 파장은 1548.24 nm에서 1531.95 nm까지 약 16.29 nm를 가변할 수 있었으며, 이 때 slope efficiency는 약 -0.16 nm/mW였다. 레이저 공진기 안의 편광을 적절하게 조절하면 모든 파장 가변 범위에서 35 dB 이상의 SMSR(side mode suppression ratio)을 얻을 수 있었다. 레이저 공진기 외부의 온도가 변화하면 발진하는 파장이 변하는 것을 알 수 있었다. 따라서 PWBG 파장 필터를 이용하여 안정된 파장 가변 레이저를 구현하기 위해서는 PWBG 파장 필터의 온도 안정화가 필요하며, 또한 편광에 대한 영향을 최소화하기 위해서는 레이저 공진기를 편광유지 광섬유로 구성해야 한다.

Keywords

References

  1. N. Bamiedakis, J. Beals IV, R. V. Penty, I. H. White, J. V. DeGroot, Jr., and T. V. Clapp, "Cost-effective multimode polymer waveguides for high-speed on-board optical interconnects", IEEE J. Quant. Electron. 45, 415 (2009). https://doi.org/10.1109/JQE.2009.2013111
  2. J.-W. Kim, N.-S. Son, J.-H. Jang, K.-J. Kim, and M.-C. Oh, "Ultra-low inter-channel crosstalk in array waveguide device incorporating self-assembled microsphere diffraction layer," Opt. Express 19, 20904-20909 (2011). https://doi.org/10.1364/OE.19.020904
  3. H. Uno and T. Ishigure, "GI-core polymer parallel optical waveguide with high-loss, carbon-black-doped cladding for extra low inter-channel crosstalk," Opt. Express 19, 10931-10939 (2011). https://doi.org/10.1364/OE.19.010931
  4. S.-H. Park, J.-W. Kim, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, "Polymer waveguide birefringence modulators," IEEE Photon. Technol. Lett. 24, 845-847 (2012).
  5. J.-W. Kim, S.-H. Park, W.-S. Chu, and M.-C. Oh, "Integrated-optic polarization controllers incorporating polymer waveguide birefringence modulators," Opt. Express 20, 12443-12448 (2012). https://doi.org/10.1364/OE.20.012443
  6. J.-S. Shin, C.-H. Lee, S.-Y. Shin, G.-H. Huang, W.-S. Chu, M.-C. Oh, Y.-O. Noh, and H.-J. Lee, "Arrayed waveguide collimators for integrating free-space optics on polymeric waveguide devices," Opt. Express 22, 23801-23806 (2014). https://doi.org/10.1364/OE.22.023801
  7. J.-S. Shin, T.-H. Park, W.-S. Chu, C.-H. Lee, S.-Y. Shin, and M.-C. Oh, "Tunable channel-drop filters consisting of polymeric Bragg reflectors and a mode sorting asymmetric X-junction," Opt. Express 23, 17223-17228 (2015). https://doi.org/10.1364/OE.23.017223
  8. K. O. Hill and G. Meltz, "Fiber Bragg Grating Technology Fundamental and Overview," J. Lightwave Technol. 15, 1263-1276 (1997). https://doi.org/10.1109/50.618320
  9. Ahmad, H.; Saat, N.K.; Harun, S.W. S-band erbium-doped fiber ring laser using a fiber Bragg grating. Laser. Phys. Lett. 2005, 2, 369-371. https://doi.org/10.1002/lapl.200510009
  10. S. Feng, O. Xu, S. Lu, X. Mao, T. Ning, and S. Jian, "Single-polarization, switchable dual-wavelength erbium-doped fiber laser with two polarization-maintaining fiber Bragg gratings," Opt. Express 16, 11830-11835 (2008). https://doi.org/10.1364/OE.16.011830
  11. M. Y. Jeon, N. Kim, J. Shin, J. S. Jeong, S.-P. Han, C. W. Lee, Y. A. Leem, D.-S. Yee, H. S. Chun, and K. H. Park, "Widely tunable dual-wavelength $Er^{3+}$-doped fiber laser for tunable continuous-wave terahertz radiation," Opt. Express 18, 12291-12297 (2010). https://doi.org/10.1364/OE.18.012291
  12. Y.-O. Noh, H.-J. Lee, J. J. Ju, M.-s. Kim, S. H. Oh, and M.-C. Oh, "Continuously tunable compact lasers based on thermo-optic polymer waveguides with Bragg gratings," Opt. Express 16, 18194-18201 (2008). https://doi.org/10.1364/OE.16.018194
  13. N.-S. Son, K.-J. Kim, J.-W. Kim, and M.-C. Oh, "Nearinfrared tunable lasers with polymer waveguide Bragg gratings," Opt. Express 20, 827-834 (2012). https://doi.org/10.1364/OE.20.000827
  14. J.-W. Kim, K.-J. Kim, N.-S. Son, and M.-C. Oh, "Strainimposed External Cavity Tunable Lasers Operating for NIR Wavelength," J. Opt. Soc. Korea 17, 172-176 (2013). https://doi.org/10.3807/JOSK.2013.17.2.172
  15. B. K. Choi, I.-G. Park, J. H. Byun, N. Kim, S.-P. Han, K. H. Park, J. K. Seo, H. K. Lee, and M. Y. Jeon, "A widely tunable, dual-wavelength fiber laser incorporating two polymer waveguide Bragg gratings," Laser Phys. Lett. 10, 125105 (2013). https://doi.org/10.1088/1612-2011/10/12/125105
  16. C.-H. Sung, J.-W. Kim, J.-S. Shin, and M.-C. Oh, "Two-Wavelength Lasers Based on Oversized Rib Polymer Waveguide Bragg Reflectors," Korean Journal of Optics and Photonics, Vol. 25, p. 38 (2014). https://doi.org/10.3807/KJOP.2014.25.1.038
  17. K.-J. Kim, J.-K. Seo, and M.-C. Oh, "Strain induced tunable wavelength filters based on flexible polymer waveguide Bragg reflector," Opt. Express 16, 1423-1430 (2008). https://doi.org/10.1364/OE.16.001423
  18. K.-J. Kim and M.-C. Oh, "Flexible Bragg reflection waveguide devices fabricated by post-lift-off process," IEEE Photon. Technol. Lett. 20, 288-290 (2008). https://doi.org/10.1109/LPT.2007.915582
  19. S. H. Oh, K.-H. Yoon, K. S. Kim, J. Kim, O.-K. Kwon, D. K. Oh, Y.-O. Noh, J. K. Seo, and H.-J. Lee, "Tunable external cavity laser by hybrid integration of a superluminescent diode and a polymer Bragg reflector," IEEE J. Sel. Top. Quantum. Electron. 17, 1534-1541 (2011). https://doi.org/10.1109/JSTQE.2011.2130515